悬浮隧道锚索流固耦合振动试验研究

晁春峰1,2,项贻强1,杨超3

振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 158-163.

PDF(2607 KB)
PDF(2607 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 158-163.
论文

悬浮隧道锚索流固耦合振动试验研究

  • 晁春峰1,2,项贻强1,杨超3
作者信息 +

Experiment on Cable Dynamic Response of Submerged Floating Tunnel based on Fluid-Structure Interaction

  • CHAO Chunfeng1,2, XIANG Yiqiang3, YANG Chao1
Author information +
文章历史 +

摘要

悬浮隧道跨越长深水域的新型交通结构物。在水流的作用下,锚索将会发生涡激振动,以往的研究主要采用数值方法,而进行模型试验研究是探索悬浮隧道锚索涡激振动机理不可或缺的研究手段之一。本文利用风浪流多功能水槽,以千岛湖悬浮隧道锚索为原型,采用节段模型试验的方法,进行了均匀流作用下锚索涡激振动试验研究。通过试验发现,圆形锚索的Cm值约为0.94,线性流体阻尼比ξ’约为1.26%;锚索在约化速度U/fnD =5.8~10.1发生涡激锁定现象,产生涡激共振,此时横向振幅约化值(Ay/D)最大达到1.10,顺流向振动依旧较小,而升力系数CL和拖曳力系数CD均会显著的增大;参数分析发现,圆形锚索倾斜布置有利于降低涡激共振的不利影响,但当来流角度的变化后会对倾斜布置的锚索产生不利影响。

Abstract

Submerged floating tunnel(SFT) is a new traffic structure across long and deep waterway. The vortex-induced vibration of cables will occur under action of water current. Privious studies were done by using numerical methods, however, experiment is indispensable mean to explore VIV mechanism of cables in water. In this paper, taking cables of Qiandao Lake SFT for prototype, the experiments of VIV on cable were carried out under the action of current by using segment models in stormy stream integrated sink. The results show that inertial force coefficient Cm of circular cable is 0.94, linear fluid damping ratio ξ’ is 1.26%; when the reduced velocity is between 5.8~10.1, the vortex-induced resonance will occur, the maximum lateral amplitude Ay/D is 1.10, the in-line amplitude is still low, and the lift coefficient CL and drag coefficient CD will increase. The parametric analysis concluded that the diagonal arrangement of circular cables will be helpful to reduce the VIV effects and the changing of flow direction will adversely affect vibration of inclined cables.

关键词

悬浮隧道 / 涡激振动 / 节段模型试验 / 流固耦合

Key words

Submerged floating tunnel / Vortex-Induced vibration / Segment model / Fluid-Structure Interaction  /

引用本文

导出引用
晁春峰1,2,项贻强1,杨超3. 悬浮隧道锚索流固耦合振动试验研究[J]. 振动与冲击, 2016, 35(3): 158-163
CHAO Chunfeng1,2, XIANG Yiqiang3, YANG Chao1. Experiment on Cable Dynamic Response of Submerged Floating Tunnel based on Fluid-Structure Interaction[J]. Journal of Vibration and Shock, 2016, 35(3): 158-163

参考文献

[1]  AHRENS D. Submerged floating tunnels—A concept whose time has arrived [J]. Tunneling and Underground Space Technology, 1997, 12(2): 317-336.
[2]  项贻强, 薛静平. 悬浮隧道在国内外的研究[J]. 中外公路. 2002, 22(6):49-52
Xiang Yiqiang, Xue Jinping. Study on submerged floating tunnels in the world.[J] Journal of China & Foreign highway,2002, 22(6):49-52
[3]  项贻强, 晁春峰. 悬浮隧道管体及锚索耦合作用的涡激动力响应[J]. 浙江大学学报(工学版), 2012, 46(3):409-415
 Xiang Yiqiang, Chao Chunfeng. Vortex- induced dynamic response for the combined action of tube and cable of submerged floating tunnel[J]. Journal of Zhejiang University(Engineering Science). 2012, 46(3):409-415
[4]  项贻强, 张科乾. 基于Morison方程分层积分计算悬浮 隧道的波浪力[J]. 浙江大学学报(工学版).  2011, 45(8):1399-1404
Xiang Yiqiang, Zhang keqian. Calculation of Wave Force Acting on Submerged Floating Tunnel. Journal of Zhejiang University(Engineering Science). 2011,45(8):1399-1404
[5]  Brancaleoni F,Casteilani A, Dasdia P. The response of Submerged Tunnels to Their Environment[J]. Engineering Structures, 1989, 11(1):47-56
[6]  Remsfth S, Ieira B J, Okstad K M, et al. Dynamic Response and Fluid/Structure Interaction of Submerged Floating Tunnels[J]. Computers and Structures, 1999, 72(3):659-685
[7]  Kunisu H, Mizuno S,Mizuno Y, et al. Study on Submerged Floating Tunnel Characteristics Under the Wave Condition[C]//ISOPE. Proceedings of the International Offshore and Polar Engineering Conference. Osaka: ISOPE, 1994:27-32
[8]  麦继婷, 罗忠贤, 关宝树. 流作用下悬浮隧道张力腿的涡激动力响应[J]. 西南交通大学学报,2004, 39(5):600-604
[9]  李剑. 水中悬浮隧道概念设计及其关键技术研究[D]. 上海: 同济大学, 2003
[10]  陈健云, 孙胜男, 苏志彬. 水流作用下悬浮隧道锚索的动力响应[J]. 工程力学. 2008, 25(10):229-234
[11]  Terje Hauka’s; Svein Remseth. Global dynamic analysis of floating submerged tunnels preliminary study[R]. Department of Structural Engineering. Norwegian University of Science and Technology, 1997
[12]  钱若军, 董石麟, 袁行飞. 流固耦合研究进展[J]. 空间结构. 2008, 14(1):3-15
[13]  晁春峰. 悬浮隧道流固耦合动力响应分析及试验研究[D]. 浙江: 浙江大学, 2013
[14]  宋吉宁. 立管涡激振动的实验研究与离散涡法数值模拟[D]. 大连: 大连理工大学, 2012
[15]  Jauvtis N., Williamson C H K. Vortex-induced vibration of a cylinder with two degrees of freedom [J]. Journal of Fluids and Structures. 2003, 17 (7): 1035-1042
[16]  Jauvtis N., Williamson C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping [J]. Journal of Fluid Mechanics. 2004, 509: 23-62
[17]  Robert D. Blevins, Charles S. Coughran. Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and reynolds number[J]. Journal of Fluids Engineering. 2009, 131: 1-7

PDF(2607 KB)

591

Accesses

0

Citation

Detail

段落导航
相关文章

/