叶轮隔舌间隙对离心泵性能和流动噪声影响的试验研究

司乔瑞,袁寿其,袁建平

振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 164-168.

PDF(1809 KB)
PDF(1809 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 164-168.
论文

叶轮隔舌间隙对离心泵性能和流动噪声影响的试验研究

  • 司乔瑞,袁寿其,袁建平
作者信息 +

Experimental study on the influence of impeller-tongue gap on performance and flow-induced noise characteristic of centrifugal pumps

  • Si Qiao-rui  Yuan Shou-qi  Yuan Jian-ping
Author information +
文章历史 +

摘要

搭建了离心泵流动诱导噪声测试台,采用四端网络法声学测试模型,试验研究了离心泵性能和流动噪声随流量的变化规律,分析了空化发生时的流动噪声特性。通过研究不同叶轮切割量对模型泵外特性、流动噪声声压级和空化性能的影响,提出叶轮和隔舌之间的最佳间隙值。研究结果表明:在高效区运行时,模型泵进出口流动诱导噪声均随流量先减小,至效率最高工况点达到最小,然后上升;各流量下,随着空化余量的减小,模型泵进口噪声总声压级先缓慢增加,再迅速上升,达到极值后缓慢下降;随着叶轮切割量的增加,模型泵扬程跟叶轮直径的平方成正比,最高效率点向小流量工况偏移,临界空化余量变小;综和性能和流动噪声考虑,模型泵叶轮和隔舌的最佳间隙率为15%;在间隙值小于最佳值时,切割叶轮能显著降低噪声并提高模型泵的临界空化余量,并且对模型泵出口流动噪声的影响比进口明显。

Abstract

A test rig of the flow-induced noise based on passive four terminal network method of the centrifugal pump was built to collect sound signals in various operating conditions including different flowrates and cavitating status. The sound pressure level initially decreases when the flow rate is greater than 0.6Qd, reaches the minimum between Qd and 1.2Qd, and then subsequently increases with increasing flow rate. As the cavitation coefficient is reduced, the overall sound pressure level of flow-induced noise is gradually increased, and decreased after reaching a maximum. An optimum value as 15% of the impeller radius has been found between impeller and volute tongue in order to reach a minium sound level. Cutting the impeller diameter could significantly reduce the noise levels especially at the pump outlet and improve the cavitation performance of the model pump when the gap is less than the optimum.

关键词

离心泵 / 流动噪声 / 性能 / 空化 / 叶轮隔舌间隙

Key words

centrifugal pumps / flow-induced noise / performance / cavitation / impeller-tongue gap

引用本文

导出引用
司乔瑞,袁寿其,袁建平. 叶轮隔舌间隙对离心泵性能和流动噪声影响的试验研究[J]. 振动与冲击, 2016, 35(3): 164-168
Si Qiao-rui Yuan Shou-qi Yuan Jian-ping. Experimental study on the influence of impeller-tongue gap on performance and flow-induced noise characteristic of centrifugal pumps[J]. Journal of Vibration and Shock, 2016, 35(3): 164-168

参考文献

[1] Johann F G.Centrifugal Pumps[M].New York:Springer Berlin Heidelberg,2008.
[2] 蒋爱华,张志谊,章艺,等.离心泵噪声研究的综述和展望[J].振动与冲击,2011,3(2):77-84.
JIANG Ai-hua, ZHANG Zhi-yi, ZHANG Yi, et al. Review and outlook of studying on noise of centrifugal pumps[J]. Journal of Vibration and Shock, 2011, 3(2): 77-84.
[3] Simpson H C,Clark T A,Weir G A.A theoretical investigation of hydraulic noise in pumps[J].Journal of Sound and Vibration,1967:456-488.
[4] Rzentkowski G,Zbroja S.Experimental characterization of centrifugal pumps as an acoustic source at the blade-passing frequency[J].Journal of Fluids and Structures,2000,14:529-558.
[5] Bernd D,Wurm F H.Noise sources in centrifugal pumps[C].Proceedings of the 2nd WSEAS Int.Conference on Applied and Theoretical Mechanics,Venice,Italy,20th-22th November,2006,pp:203-207.
[6] Qiaorui Si,Shouqi Yuan,Jianping Yuan,et al.Investigation on flow-induced noise due to backflow in low specific speed centrifugal pumps[J].Advances in Mechanical Engineering,2013,109048.
[7] 蒋爱华,李国平,周璞,等.离心泵流体激励力诱发振动:蜗壳与叶轮途径[J].振动与冲击,2014,33(10):1-7.
JIANG Ai-hua, LI Guo-ping, ZHOU Pu, et al. Vibration incited by fluid florces on centrifugal pump from volute path and impeller path[J]. Journal of Vibration and Shock, 2014, 33(10): 1-7.
[8] Chu S,Dong R,Katz J.Relationship between unsteady flow,pressure fluctuations,and noise in a centrifugal pump,Part A:Use of PDV data to compute the pressure field[J].ASME Journal of Fluids Engineering,1995,117:24-29.
[9] Chu S,Dong R,Katz J.Relationship between unsteady flow,pressure fluctuations,and noise in a centrifugal pump,Part B:effects of blade-tongue interaction[J].ASME Journal of Fluids Engineering,1995,117:30-35.
[10] Srivastav O P,Pandu K R,Gupta K.Effect of radial gap between impeller and diffuser on vibration and noise in a centrifugal pump[J].Journal of the Institution of Engineers (India):Mechanical Engineering Division,2003,84:36-39.
[11] 冯涛.离心泵流动噪声的测量研究[D].北京:中国科学院声学研究所,2005.
[12] 潘中永,袁寿其.泵空化基础[M].镇江:江苏大学出版社,2013.
[13] Brennen C E.Hydrodynamics of Pumps [M].New York:Oxford University Press,1994.
[14] 段向阳,王永生,苏永生,等.基于声压测量的离心泵空化监测[J].兵工学报,2010,31(9):1268-1273.
DUAN Xiang-yang, WANG Yong-sheng, SU Yong-sheng, et al. Cavitation monitoring in centrifugal pump based on sound pressure measurement[J]. Acta Armamentarii, 2010, 31(9): 1268-1273.
[15] 段向阳,王永生,苏永生.振动分析在离心泵空化监测中的应用[J].振动与冲击,2011,30(4):161-165.
DUAN Xiang-yang, WANG Yong-sheng, SU Yong-sheng. Vibration analysis applied in cavitation monitoring of a centrifugal pump[J]. Journal of Vibration and Shock, 2011, 30(4): 161-165.
[16] 关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011.
[17] GB/T3216-2005.回转动力泵水力性能验收试验[S].北京:中国标准出版社,2005.
[18] 黄景泉,龚光寅,武延祥,等.空化噪声的实验研究[J].水动力学研究与进展,1988,3(4):8-15.
HUANG Jing-chuan, XI Guang-yin, WU Yan-xiang, et al. Experimental investigations of cavitation noise[J]. Advances in Hydrodynamics, 1988, 3(4): 8-15.
[19] Chudina M.Noise as an indicator of cavitation in a centrifugal pump[J].Acoustical Physics,2003,49(4):463-474.

PDF(1809 KB)

Accesses

Citation

Detail

段落导航
相关文章

/