本文研究带有刚性隔板的矩形截面渡槽中液体的微幅线性晃动特性。将因隔板而导致的复杂液体域分割为若干个形状简单且边界条件均一的子域,分别研究各子域内液体运动的势函数。利用叠加原理和分离变量法,导出每个子域内液体速度势的一般解。根据液体子域界面处速度和压力的连续条件以及自由液面处的表面波条件,得到含有待定系数的级数方程。对方程作Fourier展开,即可求得液体的固有晃动频率和振型函数。
Abstract
In this paper, the small amplitude sloshing of an ideal fluid in a rectangular rigid aqueduct with a rigid baffle was studied. The complicated fluid domain caused by the baffle was divided into several sub-domains with the simple shape and the uniform boundary conditions. The velocity potential functions corresponding to every fluid sub-domain were studied. The general expressions of the modal shape functions of each sub-domain were analytically deduced by using the method of separation of variables based on the superposition principle. According to the continuous conditions of velocity and pressure on the interface between two sub-domains and the free fluid surface wave conditions, the unknown coefficients in the velocity potential solutions can be uniquely obtained. The natural sloshing frequencies and modal functions were numerically determined by using the Fourier series expansion.
Key Words: rigid baffle; rectangular aqueduct; fluid sub-domain; generalized eigenvalue; natural frequency; modal shape function
关键词
刚性隔板 /
矩形截面 /
液体子域 /
广义特征值 /
固有频率 /
振型函数
{{custom_keyword}} /
Key words
rigid baffle
/
rectangular aqueduct /
fluid sub-domain /
generalized eigenvalue /
natural frequency /
modal shape function
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 万水,朱德懋. 液体的防晃研究进展[J].弹道学报,1996,8(3): 90-94.
WAN Shui, ZHU De-mao. Development of research on liquid slosh suppression [J]. Journal Ballistics, 1996, 8(3): 90-94.
[2] 邵岩,赵兰浩,李同春. 考虑流固耦合的渡槽动力计算方法综述[J]. 人民黄河,2005,27(11):55-56.
SHAO Yan, ZHAO Lan-hao, LI Tong-chun. The calculation of aqueduct with its fluid-solid coupling [J]. Yellow River, 2005, 27(11):55-56.
[3] Housner G W. Dynamic Pressure on Accelerated Fluid Containers [J]. Bulletin of Seismological Of America, 1957, 47 (1): 15-35.
[4] 何建涛,刘云贺,孙蓉莉. 附加质量模型在渡槽抗震计算中的适用性研究[J]. 西安理工大学学报,2007,23(1):52-55.
HE Jian-tao, LIU Yun-he, SUN Rong-li. Research on Additional Mass Model’s Applicability in the Seismic Calculation of Aqueduct [J]. Journal of Xi’an University of Technology, 2007, 23(1): 52-55.
[5] 李遇春,楼梦麟. 渡槽中流体非线性晃动的边界元模拟[J]. 地震工程与工程振动,2000,20(2):51-56.
LI Yu-chun, LOU Meng-lin. BEM simulation of nonlinear sloshing for aqueduct fluid [J]. Earthquake Engineering and Engineering Vibration, 2000, 20(2): 51-56.
[6] 岳宝增,李笑天. ALE有限元方法的研究和应用[J]. 力学与实践,2002,(2):7-11.
YUE Bao-zeng, LI Tian-xiao. Study of the ALE finite element method and ITS applications [J]. Mechanics in Engineering, 2002, (2): 7-11.
[7] 黄 磊,刘利琴,唐友刚.二维矩形月池内流体的自振特性研究[J].振动与冲击,2014 ,33(22):139-145.
HUANG Lei,LIU Li-qin,TANG You-gang.Natural vibration characteristics of fluid in a two dimensional rectangular moonpool[J].Journal of Vibration and Shock,2014,33(22):139-145.
[8] ZHOU Ding, LIU Wie-Qing. Hydro-elastic vibrations of flexible rectangular tanks partially filled with liquid [J]. International Journal for Numerical Methods In Engineering, 2007, 71: 149-174.
[9] 王佳栋,周叮,刘伟庆,带环形隔板圆柱形储液罐中液体晃动的解析研究,振动与冲击,2010,29(2):54-59.
WANG Jia-dong, ZHOU Ding, LIU Wei-qing. Analytical study of small amplitude sloshing of liquid in a cylindrical tank with an annual baffle[J]. Journal of Vibration and Shock, 2010,29(2):54-59.
[10] WANG Jia -dong, ZHOU Ding and LIU Wie-Qing. Sloshing of liquid in rigid cylindrical container with a rigid annular baffle. Part I: Free vibration [J]. Shock and Vibration 2012, 19: 1185–1203.
[11] WANG Jia -dong D, ZHOU Ding and LIU Wie-Qing. Sloshing of liquid in rigid cylindrical container with a rigid annular baffle. Part II: Lateral excitation [J]. Shock and Vibration 2012,19:1205–1222.
[12] Biswal K C, Bhattacharyya S K. Free-Vibration Analysis Of Liquid-Filled Tank With Baffles [J]. Journal of Sound and Vibration, 2003, 259(1): 177-192.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}