通过建立并联原型机构的微分雅克比矩阵方程,实现平面整体式三自由度全柔顺并联机构与并联原型机构之间的矢量同构映射。在此基础上,建立平面整体式3-PRR型全柔顺并联机构SIMP拓扑优化模型,并采用优化准则算法,结合矢量同构映射方程,进行了平面整体式3-PRR型全柔顺并联机构同构构型设计,通过应力分布和前四阶振动固有频率仿真对比研究表明:所采取的拓扑优化设计方法使平面整体式全柔顺并联机构具有一定的均布刚度和较好的振动抑制性能,且对其振动频率的分析可为机构尺寸优化及振型优化提供了重要的依据。同时,微运动特性的仿真表明其与传统并联原型机构之间的运动学同构性一致。该结果对平面整体式全柔顺并联机构的构型拓扑优化设计有实际意义。
Abstract
By establishing the differential Jacobian matrix equation of parallel prototypical mechanism, the vector isomorphic mapping between planar integrated fully compliant parallel mechanism and parallel prototypical mechanism is realized. On this basis, the SIMP topology optimization model of 3-PRR type planar integrated fully compliant parallel mechanism is build, and optimization criteria algorithm is adopted, combined with the vector isomorphic mapping equation, the isomorphic structure of 3-PRR type planar integrated fully compliant parallel robot is design. By comparing its simulation of stress distribution and first four vibration natural frequencies, it shown that the topology optimization method introduced in this paper make planar integrated fully compliant parallel mechanism had enough uniform stiffness and better performance of vibration suppression, and the analysis of its vibration frequencies provide important basis for size and modal optimization of mechanism. Meanwhile, the simulation of differential kinematical characteristics shown kinematics of isomorphism between planar integrated fully compliant parallel mechanism and traditional parallel prototypical mechanism. The method and analysis above may be helpful for structural designing of planar integrated fully compliant parallel mechanism.
关键词
平面整体式三自由度全柔顺并联机构 /
微分矢量同构映射 /
拓扑优化 /
振动固有频率
{{custom_keyword}} /
Key words
planar integrated 3-DOF fully compliant parallel manipulator, differential vector isomorphic mapping, topology optimization, /
vibration natural frequency
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告(2011-2020)[R]. 北京:科学出版社,2010.
The national natural science fund committee of engineering and material science.Mechanical engineering discipline development strategy report(2011-2020)[R].Beijing:Science Press,2010.
[2] 豪厄尔(美). 柔顺机构学[M]. 余跃庆译. 北京:高等教育出版社,2007.5.
Howell L L.Compliant mechanisms[M].Yu Yue Qing. Beijing:Higher Education Press,2007.5.
[3] 余跃庆,徐齐平.柔顺机构PR伪刚体动力学建模与特性分析[J]. 农业机械学报,2013,44 (3):225-229.
Yu Yueqing,Xu Qiping.Dynamic Modeling and Characteristic Analysis of Compliant Mechanisms Based on PR Pseudo-rigid-body Model[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44 (3):225-229.
[4] Xiao S L, Li Y M, Meng Q L. Mobility analysis of a 3-PUU flexure-based manipulator based on screw theory and compliance matrix mechod[J]. International Journal of Precision Engineering and Manufacturing,2013, 14(8): 1345-1353.
[5] 李杨民,肖宵,汤晖. 一种新型3自由度大行程微定位平台设计与分析[J]. 机械工程学报,2013,49(19): 48-54.
Li Yangming, Xiao Xiao, Tang Hui. Design and analysis of a novel 3-dof large stroke micro-positioning platform[J].Journal of Mechanical Engineering,2013,49(19):48-54.
[6] 余跃庆,崔忠炜,赵鑫,等. 柔顺关节并联机器人设计与实验[J]. 农业机械学报,2013,44(7): 274-278.
Yu Yue Qqing,Cui Zhong Wei,Zhao Xin, et al.Design and Experiment of Parallel Robot with Compliant Joints[J].
Transactions of the Chinese Society for Agricultural Machinery,2013,44(7): 274-278.
[7] Midha A, Norton T W, Howell L L.On nomenclature, classification and abstraction of compliant mechanism[J]. Trans ASME. Mech Design, 1994,116(1):270-279.
[8] 朱大昌,顾起华,陈德海,等.具有全柔顺支链的空间四自由度微动超精密定位平台:中国,201010564871.8[P]. 2011-05-25.
Zhu Dachang,Gu Qihua,Chen Dehai, et al. 4-dof spatial micro ultra-precision positioning platform with fully compliant subchains:China,201010564871.8[P]. 2011-05-25.
[9] 胡俊峰,徐贵阳,郝亚洲.基于动态特性的复合桥式微动平台优化设计[J].农业机械学报,2014,45(1):306-312.
Hu Junfeng,Xu Guiyang,HaoYazhou.Optimization design of a compound bridge-type micro-platform based on dynamic characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(1):306-312.
[10] Zhu J H,Hou J, Zhang W H,et al.Structural topology optimization with constraints on multi-fastener joint loads[J]. Structural and Multidisciplinary Optimization,2014,50: 561-571.
[11] 占金青,杨康,黄志超.基于节点变量法的连续体结构拓扑优化设计[J].农业机械学报,2014,45(9): 329-332.
Zhan Jinqing,Yang Kang,Huang Zhichao.Topology Optimization of Continuum Structures Using Node Variable Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(9):329-332.
[12] Kitayama S, Yamazaki K, Yamakawa H. Topology optimization of planar and plate structures using conformal mapping[J]. Struct Multidisc Optim, 2005, 29: 125-133.
[13] 罗震,郭文德,蒙永立,等.全柔性微型机构的拓扑优化设计技术研究[J].航空学报,2005,26(5):617-625.
Luo Zhen, Guo Wende, Meng Yongli, et al.Fully compliant micro-mechanism using topological optimization approach[J].Acta Aeronautica Sinica,2005,26(5):617-625.
[14] Song J H, Kim C.3-D topology optimization based on nodal density of divided sub-elements for enhanced surface representation[J].International Journal of Precision Engineering and Manufacturing, 2011, 13(4):557-563.
[15] 朱大昌,冯文结,安梓铭.整体式平面三自由度全柔顺并联机构构型拓扑优化设计[J].机械工程学报,2015,51(5):30-36.
Zhu Dachang,Feng Wenjie,An Ziming.Topology Optimization Integrated Design of 3-DOF Fully Compliant Planar Parallel Manipulator[J].Journal of Mechanical Engineering,2015,51(5):30-36.
[16] Bendsoe M P,Sigmund O.Material interpolation schemes in topology optimization[J]. Archives of Applied Mechanics.1999,69(9-10) : 635-654.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}