基于车辆/轨道耦合动力学理论,分析对比了选用两种方案转向架情况下机车动力学特性,以及对牵引销结构冲击的影响。以某型米轨机车为例,结合国外山区线路特征,使用动力学软件SIMPACK构建车轨耦合动力学模型。通过模拟实际线路工况分析发现直线工况下由于牵引销纵向自由间隙的存在,在较差线路上高速运行时,由于轨道纵向激励的影响使得牵引销受到较大的纵向冲击,原始方案三个牵引销按顺序最大纵向力分别为165kN、197kN和167kN;改进后方案的牵引销纵向力最大值为165kN、141kN和186kN。小半径曲线工况下原始方案牵引销与横向止档发生剧烈碰撞,第二位牵引销所受的横向冲击最大,达到259kN,而考虑车轮磨耗时,冲击将达到785kN。改进方案牵引销横向冲击较小,均未超过45kN。结果表明:通过小半径曲线时,牵引销产生的巨大横向力可能是造成牵引销固定螺栓松动、剪断的原因。在较差线路上,轨道不平顺造成的纵向冲击这也可能引起该问题。
Abstract
Based on the vehicle/track coupling dynamics theory, analysis and compae the dynamics characterastic of two kinds of locomotive bogies,then influence that the impact have on the traction pins.Take a certain type of meter gauge locomotive for instance. Use dynamics software of SIMPACK to establish a vehicle and track coupling dynamics model ,combine with the characteristics of foreign mountain lines.Simulate the actual working conditions. Due to the existence of freedom of traction vertical clearance, The traction pin subject to greater longitudinal impact while running on the poor line in high speed. According to the original program the maximum longitudinal forces of three traction pins are 165kN, 197kN and 167kN. For upswing plan the figures are 165kN, 141kN and 186kN. The Traction pins and horizontal stopper occurs violent collision in mall radius curve condition according to the original program. The second traction pins suffered the biggest lateral impact reach 259kN. While considering the wheel wear, the impact even reached 785kN.As improved method ,the traction pins lateral impact is small, no more than 45kN.The results showed that:the large lateral force generated between traction pins and lateral stop may cause bolts’ looseness and fracture while crossing the small radius curves, On the poor line, longitudinal impact caused by track irregularity may also result in the problem.
关键词
米轨机车 /
转向架 /
牵引销 /
动力学性能
{{custom_keyword}} /
Key words
Meter Gage Locomotive /
Bogie /
Traction Pin /
Dynamics Performance Index
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王开云,翟婉明,蔡成标.轮轨结构参数对列车运动稳定性的影响[J].中国铁道科学,2003(1):45-50.
Wang Kaiyun,Zhai Wanming,Cai Chengbiao.Effect of Wheel Rail Structure Parame teron Stability of Train Movement[J]. China Railway Science,2003(1):45-50.
[2] 李杨辉,赵永翔,孙亚芳.现用米轨货车橡胶缓冲器性能研究[J].西南交通大学学报,2004(1):73-76.
Li Yanghui,Zhao Yongxiang,Sun Yafang.Experimental Researchon Properties of Existent Rubber Draft Gear for Meter-Gage Railway Freight Car. Journal of Southwest Jiaotong University,2004(1):73-76.
[3] 罗世辉.轨距对机车车辆稳定性影响的研究[J].中国铁道科学,2010(2):56-60.
Luo Shihui.Studyon the Influence of the TrackGaugeon Vehicle YawStability[J]. China Railway Science,2010(2):56-60.
[4] 颜力.适合山区米轨线路六轴机车动力学研究[D].[成都]:西南交通大学,2008.
Yan Li.Research on six-axis locomotives ehich dynamic suit meter gauge of mountain railway lines[D].[CHengdu]:South West Jiaotong University,2008.
[5] N. Bosso•A. Gugliotta•A. Soma Simulation of narrow gauge railway vehicles and experimental validation by mean of scaled tests on rollerrig Meccanica (2008) 43: 211–223
[6] A Nasr and SMohammadi .The effects of train brake delay time on in-train forces [J]. Journal of Rail and Rapid Transit, 2007, 221:523-534
[7] Colin Cole, Mitchell McClanachan, etc. Wagon instability in long trains [J]. Vehicle System Dynamics Supplement, 2012, 50: 303-317.
[8] S A Simson, C Cole. Idealized steering for hauling locomotives [J]. Journal of Rail and Rapid Transit, 2010, 224: 227-236
[9] 任海滨,马喜成.马来西亚SCS动车组现场维保作业简介[J].机车电传动,2014(1):100-102.
Ren Haibin,MaXicheng.Malaysia SCS EMU site maintenance job profile[J]. Electric Drive for Locomotives,2014(1):100-102.
[10] 徐凤妹,汤恒舟,印建明,等.出口突尼斯内燃动车组车钩缓冲装置选型设计[J].铁道车辆,2013(3):13-16.
Xu Fengmei,et al.Model Selection Design of Coupler Draft Gears For DMUS Exported to Tunisia. [J]. Rolling Stock,2013(3):13-16.
[11] 胡惠泉.建设我国西部米轨铁路系统非常必要[J].铁道工程学报,1994(4):38-44.
Hu Huiquan.Construction in Western meter gauge railway system is very necessary [J]. Journal of Railway Engineering Society,1994(4):38-44.
[12]刘鹏辉,杨宜谦,尹京.地铁隧道内不同轨道结构振动测试与分析[J].振动与冲击,2014(2):31-36.
LIU Penghui;YANG Yiqian;YIN Jing.Test and analysis on vibration of different track structures in tunne[J].Journal of Vibration and Shock, 2014(2):31-36.
[13] 王忆佳,曾京,罗仁,吴娜.高速车辆车轮磨耗与轮轨接触几何关系的研究[J].振动与冲击,2010(4):45-50.
Wang Yijia,Zengjing,Luo Ren,Wu Na.Wheel profile wear and wheel/rail contact geometric relation for a high-speed train[J].Journal of Vibration and Shock,2010(4):45-50.
[14] 沙云东,郭小鹏,张军.基于应力概率密度和功率谱密度法的随机声疲劳寿命预估方法研究[J].振动与冲击,2010(1):162-165.
Sha Yundong,Guo Xiaoping,Zhang Jun,Random sonic fatigue life prediction based on stress probability density and power spectral density method[J].Journal of Vibration and Shock, ,2010(1):162-165.
[15] Gareia Tdrrago M J, Kari L, Vinolas J. Frequency and amplitude dependence of the axial and radial stiffness of carbon-black filled rubber bushings[J]. Polymer Testing. 2007, 26(5):629-638.
[16] Adolfsson Klas, Enelund Mikael. On the fractional order model of viscoelasticity[J]. Mechanics of Time-Dependent Materials. 2005, 9(1): 15-34.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}