不同激励模式下桥梁实测阻尼比差异

李湛 1,李鹏飞 1,姜震宇 1,韦韩 1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 62-67.

PDF(1633 KB)
PDF(1633 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 62-67.
论文

不同激励模式下桥梁实测阻尼比差异

  • 李湛 1 , 李鹏飞 1,姜震宇 1,韦韩 1
作者信息 +

Difference of Bridge Damping Ratio under Different Excitations

  • Li Zhan1 Li Pengfei 1 Jiang Zhenyu 1 Wei Han1
Author information +
文章历史 +

摘要

本文收集和分析了国内外学者对结构物阻尼比的实测结果,指出了当前桥梁阻尼比研究成果的局限性。为了弥补当前桥梁阻尼比实测结果匮乏的局限,本文针对三座典型桥梁进行了阻尼比测试,分析了影响桥梁阻尼比的主要因素。本文研究发现:桥梁的阻尼比不是定值,它与桥梁的类型、测试时的激励方式、阻尼比的处理方法、测试环境等有较大的相关性。激励强度越大,测试的阻尼比数值越大。车辆激励作用下的阻尼比数值明显大于环境激励下的阻尼比数值。相同激励模式下,不同的阻尼比处理方法所计算的阻尼比数值差距较大。半功率带宽法计算的阻尼比数值的离散性要大于利用自由衰减法计算的阻尼比。建议桥梁结构阻尼比的测试中需要保证激励的一致性,避免在采样过程中出现激励程度差距较大的激励模式。

Abstract

Data on the damping ratios of structure have been collected and analyzed. The limitations on the research of the bridge damping ratio have been pointed out. In order to make up the limitation of the lack of date on the damping ratios of bridges, three bridges damping ratios are tested. The damping ratios of bridges scatter with the influence of the bridge types, excitations, calculation methods of damping ratio and the test environment. With the increase in excitation intensity, the damping ratios of the bridges increase significantly. The damping ratio tested under vehicle excitation is larger than the value tested under ambient excitation. Under the same excitations, the damping ratio calculated by the half-power bandwidth method is more scattered than which calculated by the free decay method. The test of the bridge damping ratio should be carried out under the same excitations to ensure accuracy.

关键词

桥梁工程 / 阻尼比 / 激励模式 / 半功率带宽法 / 自由衰减法

Key words

bridge / damping ratio / excitation / half-power bandwidth method / free decay method

引用本文

导出引用
李湛 1,李鹏飞 1,姜震宇 1,韦韩 1. 不同激励模式下桥梁实测阻尼比差异[J]. 振动与冲击, 2016, 35(3): 62-67
Li Zhan1 Li Pengfei 1 Jiang Zhenyu 1 Wei Han1. Difference of Bridge Damping Ratio under Different Excitations[J]. Journal of Vibration and Shock, 2016, 35(3): 62-67

参考文献

[1] 克拉夫 R W, 彭津 J, 王光远译.结构动力学[M]. 第二版, 北京: 高等教育出版社, 2006.
Clough.R.W, Penzien.J. Dynamics of Structures[M]. 2nd edition,Beijing: China Higher Education Press, 2006.
[2] Leger. P, Dussualt. S. seismic-energry dissipation in mdof structure[J].Journal of Structure Engineering, 1992, 118(5):1251-1269.
[3] 李小珍, 雷虎军, 朱艳. 车-轨-桥动力系统中Rayleigh 阻尼参数分析[J]. 振动与冲击, 2013, 32(21):52-58.
LI Xiaozhen,LEI Hujun,ZHU Yan. Analysis of rayleigh damping parameters in a dynamic system of vehicle-track-bridge[J].Journal of Vibration and Shock, 2013, 32(21):52-58.
[4] Thomson W T, Dahleh M D. Theory of Vibration with Applications, 振动理论及应用[M]. 第五版, 北京: 清华大学出版社, 2005.
Thomson W T, Dahleh M D. Theory of Vibration with Applications[M]. 5th edition, Beijing: Tsinghua University Press, 2005.
[5]中华人民共和国行业推荐标准.公路桥梁抗风设计规范(JTG/T D60-01-2004),北京,人民交通出版社,2004.
The People's Republic of China Industry standard.( JTG/T D60-01-2004).“Wind-resistent Design Specification for Highway Bridge.” China Communication Press, Beijing.
[6]中华人民共和国行业推荐标准.公路桥梁抗震设计细则(JTG/T B02-01-2008),北京,人民交通出版社,2008.
The People's Republic of China Industry standard.( JTG/T B02-01-2008).“Guidelines for Seismic Design of Highway Bridges.” China Communication Press, Beijing.
[7]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2010),北京,中国建筑工业出版社,2010.
The People's Republic of China national standard.Code for seismic design of buildings(GB50011-2010),Bei Jing, China Architecture & Building Press.
[8] European Committee for Standardization.(2001).“Eurocode 8: Design of structures for earthquake resistance.” Brussels.
[9] California Department of Transportation(Caltrans).(2010).“Seismic design criteria.”SDC-2010,Caltrans,Sacramento,Califonia.
[10] Hart G C. Vasndevan R. Earthquake design of building damping [J]. Journal of the Structural Division, ASCE, 1975, 101(1): 185-19.
[11] Wen J. Wang Y F. The influence of damping change on dynamic response of concrete-filled steel tubular arch bridges [A]. Proceedings of the 4th International Conference on Advances in Steel Structures [C]. Shanghai, China, 2005.
[12] 黄维, 钱江, 周知. 竖向混合结构模态阻尼比计算研究[J]. 振动与冲击, 2014, 33(13):13-18.
HUANG Wei, QIAN Jiang, ZHOU Zhi. Equivalent modal damping ratio for vertically mixed structures[J].Journal of Vibration and Shock, 2014, 33(13):13-18.
[13] Donlon W P, Hall J F. Shaking table study of concrete gravity dam monoliths [J]. Earthquake Engineering & Structural Dynamics, 1991, 20(8): 769-786.
[14]林皋, 朱彤, 林蓓. 结构动力模型试验的相似技巧[J]. 大连理工大学学报, 2000, 40(1):1-8.
Lin Gao, Zhu Tong, Lin Bei. Similarity technique for dynamic structural model test[J]. Journal of Dalian University of Technology, 2000, 40(1):1-8.
[15]龚炳年, 郝瑞坤, 赵宁. 钢-混凝土混合结构模型动力特性的试验研究[J]. 建筑结构学报, 1995, 16(3):36-43.
Gong Bingnian, Hao Ruikun, Zhao Ning. Experimental Investigations of the Dynamic Characteristics of a 23-Storey Steel-RC Mixed Structure Model[J]. Journal of Building Structures, 1995, 16(3):36-43.
[16]吕西林, 张杰. 钢和混凝土竖向混合结构阻尼特性研究[J]. 土木工程学报, 2012, 45(3):10-16.
Lu Xilin, Zhang Jie. Damping behavior of vertical structures with upper steel and lower concrete components[J]. China Civil Engineering Journal, 2012, 45(3):10-16.
[17]张相庭. 结构阻尼耗能假设及在振动计算中的应用[J]. 振动与冲击, 1982, 2: 12-22.
Zhang Xiangting. Hypothesis on energy loss due to structural damping and its application to the vibration calculation [ J] . Journal of Vibration and Shock, 1982, 2: 12-22.
[18] Newmark N M, Hall W J. Seismic design criteria for nuclear reactor facilities [A]. Proceedings of Fourth World Conference on Earthquake Engineering [C]. Santiago, 1969, 37-50.
[19] Brownjohn. A. Ambient vibration measurements of the Humber suspension bridge and comparison with calculated characteristics [J]. Proc. Inst Civ.Engrs: Part 2, 1987, 83(3): 561-600.
[20] Littler, J. D. Discussion of "Ambient vibration measurements of the Humber suspension bridge and comparison with calculated characteristics"by Brownjohn et al [J]. Proc. blstn Cir. Engrs: Part 2, 1988,85(2):725-730.
[21] Jeary, A. P. Establishing non-linear damping characteristics of structures from non-stationary response time-histories [J]. Journal of structural engineering,1992, 70(4), 61-66.
[22] Carne, T. G.et al Modal testing an immense flexible structure using natural and artifical excitation [J]. Int. J. Analytical Experimental Modal Analysis, 1988 3(4):117-122.
[23] Bendat, J. S. and Piersol, A. G. Random data: analysis and measurement procedures [M]. New York:John Wiley.
[24] Mazurek, D. F. and DeWolf, J. T. Experimental study of bridge monitoring technique Journal of structural engineering [J]. 1990, 116(9):2532-2549.
[25] Davenport, A. G., and Hill-Carroll, P. Damping in tall buildings: Its variability and treatment in design. Proc., American Society of Civil Engineers (ASCE) Spring Convention, Seattle, 1986, 42–57.
[26] Lagomarsino, S. Forecast models for damping and vibration periods of buildings [J] Journal of wind engineering and industrial aerodynamics, 1993, 48(2-3): 221–239.
[27] Kenichi Suda et al. Damping properties of buildings in Japan [J]. Journal of Wind Engineering and Industrial Aerodynamics,1996, 59(2-3):383-392.
[28] Jeary A P. Damping in structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72(9-10):345-355.
[29] Naoki Satake.et al. Damping evaluation using full-scale data of buildings in Japan [J]. Journal of Structural Engineering, 2004, 129(4):470-477.
[30] Eyre R, Tilly G P. Damping measurements on steel and composite bridges [A]. Proceeding of a Symposium on Dynamic Behaviour of Bridges at the Transport and Road Research Laboratory [C], Berkshire, UK, 1977, 22-39.
[31] Tilly, G. P. Damping of highway bridges: a review [A]. Proceeding of a Symposium on Dynamic Behaviour of Bridges at the Transport and Road Research Laboratory [C], Berkshire, UK, 1977, 1-9.
[32] Green M F, Cebon D. Modal testing of two highway bridges [A]. Proceeding of 11th International Modal Analysis Conference [C], Kissimme, FL, USA, 1993, 2,838-844.
[33] Green R. Dynamic response of bridge superstructures-Ontario observations [A]. Proceeding of a Symposium on Dynamic Behaviour of Bridges at the Transport and Road Research Laboratory [C], Berkshire, UK, 1977, 40-55.
[34] Billing J R. Dynamic loading and testing of bridges in Ontario [J]. The Canadian Journal of Chemical Engineering, 1984, 11(4):833-843.
[35] Billing J R. Dynamic test of bridges in Ontario, 1980: data capture, test procedures and data processing [R], MTC Research and Development Report SRR-82-02, Ontario Ministry of Transportation andCommunications, Downsview, Ontario, Canada, 1982.
[36] Pengfei Li. et al. Damping properties of highway bridges in china [J]. Journal of Bridge Engineering, 2014, 19(5): 04014005.
[37] Rebelo.C. et al. Dynamic behaviour of twin single-span ballasted railway viaducts-Field measurements and modal identification [J]. Engineering Structures, 2008, 30(9):2460-2469.
[38] Kaustell M, Karoumi R. Application of the continuous wavelet transform on the free vibrations of a steel–concrete composite railway bridge [J]. Engineering Structures, 2011, 33(3):911-919.
[39]张海峰.潮白河大桥加固技术及健康监测研究[D].北京.北京工业大学.2009.
Zhang Haifeng. Analysis and Monitoring Measurements of ChaoBai River Bridge[D].BeiJing. Beijing University of Technology.2009.
[40]杨光武, 徐宏光, 张 强. 马鞍山长江大桥三塔悬索桥关键技术研究[J].桥梁建设,2010,(5):7- 11.
YANG Guangwu, XU Hongguang, ZHANG Qiang. Study of Key Techniques for Three-Tower Suspension Bridge of Maanshan Changjiang River Bridge[ J] . Bridge Construction, 2010.(5): 7-11.

PDF(1633 KB)

Accesses

Citation

Detail

段落导航
相关文章

/