在不同振幅位移激励下,测试了一汽车液压衬套的动刚度、滞后角随频率的变化特性。建立了液压衬套动态特性分析的非线性集总参数模型,基于模型,探讨了液压衬套橡胶主簧、惯性通道与液压衬套动特性之间的关系,计算结果与实验结果的一致,验证了计算模型分析的正确性。分析建立的集总参数模型,表明液压衬套在不同位移振幅激励下,存储动刚度具有不动特征点及在高频激励下动刚度趋于定值的特性。基于这种特性发展了模型参数的辨识方法,并对液压衬套集总参数模型中的参数进行了识别,利用识别得到的参数对液压衬套的动特性进行了计算,验证了识别得到的参数的正确性。
Abstract
The dynamic characteristics of the hydraulic bushing, namely the dynamic stiffness and the loss angle, are crucial for the performance of the vehicle suspension. In the present work, the dynamic stiffness and the loss angle of a hydraulic bushing is tested and compared with the results predicted by a nonlinear lumped parameter model whose parameters are extracted by a parameter identification technique. Using the model, the effect of the main rubber and the inertia track on the dynamic stiffness and the loss angle is investigated. It is found the real part of the dynamic stiffness has a fix feature point while the magnitude of the dynamic stiffness tends to a certain constant value under the high frequency excitation. The good correlation suggests the validity of the model and the parameter identification implementation.
关键词
液压衬套 /
动态特性 /
测试分析 /
集总参数模型 /
计算分析;
{{custom_keyword}} /
Key words
hydraulic bushings /
dynamic performances /
test analysis /
nonlinear lumped parameter model /
calculate analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Heißing, Bernd, Ersoy, Metin. Chassis Handbook[M].Springer,2011.
[2] 上官文斌,徐驰.汽车悬架控制臂液压衬套动态特性实测与计算分析[J].振动与冲击,2007,26(9):7-10.
Wen-bin Shangguan, Chi Xu.Experiment and calculation methods of the dynamic performances for hydraulic bushings used in control arms of a suspension[J]. Journal of Vibration and Shock, 2007, 26(9):7-10.
[3] Wolfgang Sauer, Yoram Guy. Hydro Bushings-Innovative NVH Solutions in Chassis Technology[J].SAE Technical Paper Series, 2003-01-1475,2003.
[4] Norman E Lee.Fluid damped resilient mounting[P],US,US2582998 A.1952.01.22.
[5] Hipsher Gary L. High-damping resilient bushing [P], US, US3642268 A.1972.2.15.
[6] Lu M,Ari-Gur J,Garety J. Predication of automotive hydrobushing resonant frequency [J].Noise Control and Acoustics Division,ASME Proc,NCA,1999,26:157-159.
[7] Lu M.Study of automotive hydromount mechanism [D]. Michigan: Western Michigan University,2001.
[8] Tan Chai, Jason T. Dreyer, Rajendra Singh. Time domain responses of hydraulic bushing with two flow passages [J]. Journ al of Sound and Vibration.2013, 1-18.
[9] Tan Chai,Jason T.Dreyer,Rajendra Singh. Dynamic Stiffness of Hydraulic Bushing with Multiple Internal Configurations[C]. SAE Technical Paper Series, 2013-01-1924,2013.
[10] 吕振华,上官文斌,梁伟,罗捷.液阻型橡胶隔振器动态特性实验方法及实测分析.中国机械工程,2003,15(2):182-186.
Zhen-hua Lü, Wen-bin Shangguan, wei,Liang Jie Luo. Experimental Methods and Test Evaluation for the Dynamic Characteristics of Hydraulically Damped Rubber Mount[J]. China Mechanical Engineering, 2003, 15(2):182-186.
[11] Ranglin Fan , Zhenhua Lu.Fixed points on the nonlinear dynamic properties of hydraulic engine mounts and parameter identification method Experiment and theory[J]. Journal of Sound and Vibration,2007,305: 703-727.
[12] Jun Hwa Lee, Kwang-Joon Kim. An Efficient Technique for Design of Hydraulic Engine Mount via Design Variable-Embedded Damping Modeling [J]. Journal of Vibration and Acoustics,2005,127:93 -99.
[13] Nayfeh A H,Mook D T.Nonlinear oscillations[M].New York:Wiley,1979.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}