摘要
针对ABS控制时路面附着系数复杂多变以及最优滑移率难以准确估计的难点,提出一种基于滑模极值搜索算法的ABS控制,它根据“轮胎制动力-滑移率曲线”的单峰值特性,通过极值搜索算法不断的搜寻曲线的极值点,同时运用滑模变结构控制来快速逼近极值点。针对转弯制动耦合工况,通过引入方向盘转角对控制律进行修正,补偿车辆转弯时的侧向稳定性。在MATLAB/Simulink中建立了整车七自由度模型,对设计的控制器进行了仿真验证。结果表明:直线制动时,所设计的控制器可以快速搜寻到最大制动力和最优滑移率。转弯制动时,考虑了转向修正后制动滑移率有所减小而轮胎侧向力增大,但停车时间并未明显增加,提高了汽车的侧向稳定性;当路面条件改变时,控制器能够自适应路面附着系数的变化。
Abstract
A new control algorithm of ABS was proposed base on the sliding mode extremum-seeking algorithm, in terms of the fact that the road adhesion coefficient is complex and variable and the optimal slip ratio is difficult to be estimated accurately. This is achieved by adapting the extremum-seeking algorithm as a self-optimization routine that seeks the peak point of the tire force-slip curve, while it is approaching the peak point quickly using the sliding mode variable structure control method. Moreover, the driving condition of braking-in-turn has been taken into consideration. The control law was corrected by introducing the steering wheel angle to compensate for the vehicle lateral stability when cornering. Numerical simulation studies have been conducted to evaluate the proposed control algorithm using a 7-DOF full vehicle model built in MATLAB/Simulink. The simulation results show that the designed controller can quickly find the maximum braking force and optimum slip ratio value with respect to the unknown and possibly changing road conditions. When braking-in-turn, the slip ratio decreases and the tire lateral force increases without overtly increasing the parking time, thereby improving the lateral stability of the vehicle. And the controller can adapt to the variable road adhesion coefficient when road conditions changing.
关键词
车辆工程 /
防抱死制动系统 /
滑模极值搜索算法 /
汽车侧向稳定性 /
路面附着系数
{{custom_keyword}} /
Key words
vehicle engineering /
Anti-lock Braking System /
sliding mode extremum-seeking algorithm /
vehicle lateral stability /
road adhesion coefficient
{{custom_keyword}} /
周兵1,李永辉1,袁希文1, 胡哓岚1,程逸然2.
滑模极值搜索算法ABS控制及对汽车侧向稳定性补偿[J]. 振动与冲击, 2016, 35(4): 121-126
LI Yonghui1,ZHOU Bing1,YUAN Xiwen1,HU Xiaolan1,CHENG Yiran2 .
Extremum-Seeking Control of ABS Braking in Road Vehicles With Lateral Stability Improvement[J]. Journal of Vibration and Shock, 2016, 35(4): 121-126
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Harifi A,Aghagolzadeh A,Alizadeh G. Designing a sliding mode controller for slip control of antilock brake systems[J]. Transportation research part C:emerging technologies. 2008,16(6):731-741.
[2] Mirzaeinejad H,Mirzaei M. A novel method for non-linear control of wheel slip in anti-lock braking systems[J]. Control Engineering Practice. 2010,18(8): 918-926.
[3] 王伟达,丁能根,张为等. ABS逻辑门限值自调整控制方法研究与试验验证[J]. 机械工程学报,2010,46(22) :90-95.
WANG Weida,DING Nenggen,ZHANG Wei,et al. Research and Verification of the Logic Threshold Self-adjusting Control Method for ABS[J]. Journal Of Mechanical Engineering,2010,46(22) :90-95.
[4] 丁能根,王伟达,余贵珍等. 基于试验知识的ABS自适应控制策略研究与验证[J]. 汽车工程,2009,31(1):28-32.
DING Nenggen,WANG Weida, YU Zhengui,et al. Research and Validation of the Adaptive ControlStrategy for ABS Based on Experimental Knowledge[J]. Automotive Engineering,2009,31(1):28-32.
[5] Drakunov S,Ozguner U,Dix P. ABS control using optimum search via sliding modes[J]. Control Systems Technology,IEEE Transactions on. 1995,3(1):79-85.
[6] G. F. Mauer. A fuzzy logic controller for an ABS braking system[J]. Fuzzy Systems, IEEE Transactions on. 1995, 3(4):381-388.
[7] 武超,段建民,于涌川等. 气压ABS的模糊自寻优控制器设计与硬件在环验证[J]. 汽车工程,2010,32(11):989-992.
WU Chao,DUAN Jianmin,YU Yongchuan,et al. Design and HIL Validation of Fuzzy Self-optimizing Controller for Pneumatic ABS[J]. Automotive Engineering,2010,32(11):989-992.
[8] Zhang C, Ordâoänez R. Extremum seeking control and applications[M]. Springer,2012.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}