[1] 陈宗华,秦云龙,梁晓刚等. 石化行业大型离心式压缩机组安全运行研究[J]. 化工装备技术,2005,26(2):57-64.
Chen Zong-hua, Qin yun-long, Liang Xiao-gang.Safe operation research of large centrifugal compressor unit in petrochemical industry[J]. Chemical Equipment Technology, 2005, 26(2): 57-64.
[2]张松梅. 石化行业几种离心式压缩机故障诊断的应用[D]. 大连:大连理工大学,2005.
Zhang song-mei. Applicationon Fault Diagnosis for
Certain Centrifugal Compressor Units Used in Petrochemieal Industry[D]. Dalian: Dalian University of Technology, 2005.
[3]王秋香. K5403离心式压缩机状态监测与趋势预测技术研究[D]. 长沙:湖南大学,2009.
Wang Qiu-xiang. Research on Condition Monitoring and Trend Prediction Technique of Centrifugal Compressor K5403. Changsha: Hunan University, 2009.
[4]徐洪淼. 离心压缩机振动故障分析与处理[D]. 沈阳:沈阳工业大学,2009.
Xu Hong-miao. Vibration Fault Analysis and Treatment in Centrifugal Compressor[D]. Shenyang: Shenyang University of Technology, 2009.
[5]曾庆生,王湘江. 基于小波能量谱和粗糙集的离心式压缩机振动故障诊断[J]. 中南大学学报,2009,40(3):706-710.
Zeng Qing-sheng, Wang Xiang-jiang. Fault diagnosis of centrifugal compressor vibration based on wavelet
power spectrum and rough set theory[J]. Journal of Central South University, 2009, 40(3): 706-710.
[6] Thompson W E. Fluid Dynamic Excitation of Centrifugal Compressor Rotor Vibrations[J]. Journal of Fluids Engineering, 2010,100(1): 73-78.
[7] Huang N E, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis, Proc. Royal Soc. London, 1998, 454: 903-995.
[8] 何正嘉, 訾艳阳, 张西宁. 现代信号处理及工程应用[M]. 西安:西安交通大学出版社,2007.
He Zheng-jia, Zi Yan-yang, Zhang Xi-ning. Modern signal processing and engineering application[M]. Xi’an: Xi'an Jiaotong University Press, 2007.
[9] Yu D J, Cheng J S, Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical System and Signal Processing, 2005,19:259-270.
[10] Gai G H. The processing of rotor startup signals based on empirical mode decomposition[J]. Mechanical System and Signal Processing, 2006, 20: 222-235.
[11] Liu B, Riemenschneider S, Xu Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum. Mechanical System and Signal Processing, 2006, 20: 718-734.
[12] Huang N E. A new view of nonlinear waves: The Hilbert spectrum[J]. Annual Review of Fluid Mechanics,1999, 31: 417-457.
[13]赵进平.异常事件对EMD方法的影响及其解决方法研究[J].青岛海洋大学学报,2001,31(6):805-814.
Zhao Jin-ping. Study on the Effects of Abnormal Events to Empirical Mode Decomposition Method and the Removal Method for Abnormal Signal[J]. Journal of Ocean University of Qingdao, 2001, 31(6): 805-814.
[14] Rato R T, Ortigueira M D, Batista A G. On the HHT, its problems, and some solutions[J].Mechanical Systems and Signal Processing,2008,22:1374-1394.
[15] 胡爱军,孙敬敬,向玲.经验模态分解中的模态混叠问题[J].振动、测试与诊断,2011,31(4):429-434.
Hu Ai-jun, Sun Jing-jing, Xiang ling. Mode Mixing in Empirical Mode Decomposition[J]. Journal of Vibration, Measurement &Diagnosis, 2011, 31(4): 429-434.
[16] Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
[17] 曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD降噪方法[J].振动与冲击,2009,28(9):33-38.
Cao Chong-feng, Yang Shi-xi, Yang Jiang-xin. De-noising method for non-stationary vibration signals of large rotating machineries based on ensemble empirical mode decomposition[J]. Journal of Vibration and Shock,2009, 28(9): 33-38.
[18] Yu Y, Lang HH. Fault Diagnosis of Rotor Rub based on Ensemble EMD[C].ICEMI '09. 9th International Conference on Electronic Measurement & Instruments, 2009, 2-144 - 2-148.
[19] Lei Y G, He Z J, Zi YY. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical System and Signal Processing, 2009,23:1327-1338.
[20] Lei, Y.G.; Li, N.P.; Lin, J; et al. Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition. Sensors. 2013, 13, 16950-16964.
[21] 陈仁祥,汤宝平,吕中亮. 基于相关系数的EEMD转子振动信号降噪方法[J]. 振动、测试与诊断,2012,32(4):542-546.
Chen Ren-xiang, Tang Bao-ping, Lv Zhong liang. Ensemble Empirical Mode Decomposition De-noising Method Based on Correlation Coefficients for Vibration Signal of Rotor System[J]. Journal of Vibration, Measurement &Diagnosis,2012,32(4): 542-546.
[22] Zhang W B, Zhou Y J, Zhu J X. A New Rotor Fault Diagnosis Method Based on EEMD Sample Entropy and Grey Relation Degree[J]. Applied Mechanics and Materials, 2013, 347-350: 426-429.
[23] Broomhead D S, King GP. Extracting Qualitative Dynamics from Experimental Data[J], Physica D, 1986, 20: 217-236.
[24]李巍华, 史铁林, 杨叔子. 基于非线性判别分析的故障分类方法研究[J]. 振动工程学报,2005,18(2):133-138.
Li Wei-hua,Shi Tie-lin,Yang Shu-zi. Mechanical Fault Classification Using Nonlinear Discriminant Analysis[J]. Journal of Vibration Engineering, 2005, 18(2): 133-138.
[25]马再超,赵荣珍,杨文瑛. 转子故障特征数据分类的KPCA-BFDA方法. 振动、测试与诊断, 2013, 33(2): 192-198.
Ma Zai-chao, Zhao Rong-zhen, Yang Wen-ying. KPCA-BFDA for the Classification of Rotor Fault Feature Data[J]. Journal of Vibration, Measurement &Diagnosis, 2013, 33(2): 192-198.