离心式压缩机转子故障识别的EEMD-PCA方法研究

马再超1,温广瑞1,2,张恒辉1,廖与禾1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 148-155.

PDF(2219 KB)
PDF(2219 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 148-155.
论文

离心式压缩机转子故障识别的EEMD-PCA方法研究

  • 马再超1,温广瑞1,2,张恒辉1,廖与禾1
作者信息 +

Research of EEMD-PCA for Rotor Faults Identification in Centrifugal Compressor

  • MA Zai-chao1Wen Guangrui 1,2Zhang Henghui 1Liao Yuhei1
Author information +
文章历史 +

摘要

针对离心式压缩机转子系统振动小,振动信号具有非平稳、非线性和伴随噪声干扰的特点,提出一种总体平均经验模式分解(Ensemble Empirical mode decomposition, EEMD)联合主分量分析(Principal component analysis, PCA)的故障识别方法。该方法以相关分析结合傅立叶变换选择基本模式分量(intrinsic mode function, IMF)为基础,构造了波动变化性指标以定量识别EEMD的噪声幅值参数;进一步获取各运行状态的14种时域振动评价指标并构造标准化特征数据集后,采用PCA降维法得出不同类型故障的振动模式类别。通过对离心式压缩机转子典型故障的振动信号分析,其结果表明该方法能够在解除信号非平稳非线性干扰的基础上,快速独立地提取信号中的主要振动模式,制定表征不同故障类别的特征数据区域,从而有效提高了离心式压缩机的故障识别能力。

Abstract

Aiming at small vibration but vibration signal characterized of non-stationary, non-linear and interfered with noise, fault identification method through EEMD together with PCA is proposed for rotor system in centrifugal compressor. Based on the choice of IMFs by correlation analysis combined with FFT, fluctuant variation index is constructed to recognize amplitude of added noise quantitatively. At that moment, 14 kinds of vibration estimated index are calculated further to form a standardized feature data set. Consequently, dimension reduction method of PCA can be used to obtain categories of vibration modes from different faults. Analysis results of typical faults vibration signal from rotor system in centrifugal compressor suggest that based on the elimination of interference from non-stationary and non-linear, primary vibration modes can be extracted fast and independent, thus feature regions which represent different fault categories can be formulated and also improved fault identification ability of centrifugal compressor efficiently.

引用本文

导出引用
马再超1,温广瑞1,2,张恒辉1,廖与禾1. 离心式压缩机转子故障识别的EEMD-PCA方法研究[J]. 振动与冲击, 2016, 35(4): 148-155
MA Zai-chao1Wen Guangrui 1,2Zhang Henghui 1Liao Yuhei1. Research of EEMD-PCA for Rotor Faults Identification in Centrifugal Compressor[J]. Journal of Vibration and Shock, 2016, 35(4): 148-155

参考文献

[1] 陈宗华,秦云龙,梁晓刚等. 石化行业大型离心式压缩机组安全运行研究[J]. 化工装备技术,2005,26(2):57-64.
Chen Zong-hua, Qin yun-long, Liang Xiao-gang.Safe operation research of large centrifugal compressor unit in petrochemical industry[J]. Chemical Equipment Technology, 2005, 26(2): 57-64.
[2]张松梅. 石化行业几种离心式压缩机故障诊断的应用[D]. 大连:大连理工大学,2005.
Zhang song-mei. Applicationon Fault Diagnosis for
Certain Centrifugal Compressor Units Used in Petrochemieal Industry[D]. Dalian: Dalian University of Technology, 2005.
[3]王秋香. K5403离心式压缩机状态监测与趋势预测技术研究[D]. 长沙:湖南大学,2009.
Wang Qiu-xiang. Research on Condition Monitoring and Trend Prediction Technique of Centrifugal Compressor K5403. Changsha: Hunan University, 2009.
[4]徐洪淼. 离心压缩机振动故障分析与处理[D]. 沈阳:沈阳工业大学,2009.
Xu Hong-miao. Vibration Fault Analysis and Treatment in Centrifugal Compressor[D]. Shenyang: Shenyang University of Technology, 2009.
[5]曾庆生,王湘江. 基于小波能量谱和粗糙集的离心式压缩机振动故障诊断[J]. 中南大学学报,2009,40(3):706-710.
Zeng Qing-sheng, Wang Xiang-jiang. Fault diagnosis of centrifugal compressor vibration based on wavelet
power spectrum and rough set theory[J]. Journal of Central South University, 2009, 40(3): 706-710.
[6] Thompson W E. Fluid Dynamic Excitation of Centrifugal Compressor Rotor Vibrations[J]. Journal of Fluids Engineering, 2010,100(1): 73-78.
[7] Huang N E, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis, Proc. Royal Soc. London, 1998, 454: 903-995.
[8] 何正嘉, 訾艳阳, 张西宁. 现代信号处理及工程应用[M]. 西安:西安交通大学出版社,2007.
He Zheng-jia, Zi Yan-yang, Zhang Xi-ning. Modern signal processing and engineering application[M]. Xi’an: Xi'an Jiaotong University Press, 2007.
[9] Yu D J, Cheng J S, Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical System and Signal Processing, 2005,19:259-270.
[10] Gai G H. The processing of rotor startup signals based on empirical mode decomposition[J]. Mechanical System and Signal Processing, 2006, 20: 222-235.
[11] Liu B, Riemenschneider S, Xu Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum. Mechanical System and Signal Processing, 2006, 20: 718-734.
[12] Huang N E. A new view of nonlinear waves: The Hilbert spectrum[J]. Annual Review of Fluid Mechanics,1999, 31: 417-457.
[13]赵进平.异常事件对EMD方法的影响及其解决方法研究[J].青岛海洋大学学报,2001,31(6):805-814.
Zhao Jin-ping. Study on the Effects of Abnormal Events to Empirical Mode Decomposition Method and the Removal Method for Abnormal Signal[J]. Journal of Ocean University of Qingdao, 2001, 31(6): 805-814.
[14] Rato R T, Ortigueira M D, Batista A G. On the HHT, its problems, and some solutions[J].Mechanical Systems and Signal Processing,2008,22:1374-1394.
[15] 胡爱军,孙敬敬,向玲.经验模态分解中的模态混叠问题[J].振动、测试与诊断,2011,31(4):429-434.
Hu Ai-jun, Sun Jing-jing, Xiang ling. Mode Mixing in Empirical Mode Decomposition[J]. Journal of Vibration, Measurement &Diagnosis, 2011, 31(4): 429-434.
[16] Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
[17] 曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD降噪方法[J].振动与冲击,2009,28(9):33-38.
Cao Chong-feng, Yang Shi-xi, Yang Jiang-xin. De-noising method for non-stationary vibration signals of large rotating machineries based on ensemble empirical mode decomposition[J]. Journal of Vibration and Shock,2009, 28(9): 33-38.
[18] Yu Y, Lang HH. Fault Diagnosis of Rotor Rub based on Ensemble EMD[C].ICEMI '09. 9th International Conference on Electronic Measurement & Instruments, 2009, 2-144 - 2-148.
[19] Lei Y G, He Z J, Zi YY. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical System and Signal Processing, 2009,23:1327-1338.
[20] Lei, Y.G.; Li, N.P.; Lin, J; et al. Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition. Sensors. 2013, 13, 16950-16964.
[21] 陈仁祥,汤宝平,吕中亮. 基于相关系数的EEMD转子振动信号降噪方法[J]. 振动、测试与诊断,2012,32(4):542-546.
Chen Ren-xiang, Tang Bao-ping, Lv Zhong liang. Ensemble Empirical Mode Decomposition De-noising Method Based on Correlation Coefficients for Vibration Signal of Rotor System[J]. Journal of Vibration, Measurement &Diagnosis,2012,32(4): 542-546.
[22] Zhang W B, Zhou Y J, Zhu J X. A New Rotor Fault Diagnosis Method Based on EEMD Sample Entropy and Grey Relation Degree[J]. Applied Mechanics and Materials, 2013, 347-350: 426-429.
[23] Broomhead D S, King GP. Extracting Qualitative Dynamics from Experimental Data[J], Physica D, 1986, 20: 217-236.
[24]李巍华, 史铁林, 杨叔子. 基于非线性判别分析的故障分类方法研究[J]. 振动工程学报,2005,18(2):133-138.
Li Wei-hua,Shi Tie-lin,Yang Shu-zi. Mechanical Fault Classification Using Nonlinear Discriminant Analysis[J]. Journal of Vibration Engineering, 2005, 18(2): 133-138.
[25]马再超,赵荣珍,杨文瑛. 转子故障特征数据分类的KPCA-BFDA方法. 振动、测试与诊断, 2013, 33(2): 192-198.
Ma Zai-chao, Zhao Rong-zhen, Yang Wen-ying. KPCA-BFDA for the Classification of Rotor Fault Feature Data[J]. Journal of Vibration, Measurement &Diagnosis, 2013, 33(2): 192-198.
 

PDF(2219 KB)

Accesses

Citation

Detail

段落导航
相关文章

/