比例边界有限元模拟裂纹和夹杂动力相互作用

施明光1,3,徐艳杰1,张楚汉1,刘钧玉2,4,

振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 15-21.

PDF(3207 KB)
PDF(3207 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 15-21.
论文

比例边界有限元模拟裂纹和夹杂动力相互作用

  • 施明光1,3,徐艳杰1,张楚汉1,刘钧玉2,4,
作者信息 +

Simulation of dynamic interactions between the crack and inclusions by the Scaled Boundary Finite Element Method

  • SHI Mingguang1,3, XU Yanjie1, ZHANG Chuhan1, LIU Junyu2,4
Author information +
文章历史 +

摘要

基于三角形背景网格,任意结构可用 ( )边多边形比例边界有限元 (Polygon Scaled Boundary Finite Elements, PSBFE)自动离散。相对以往基于比例边界有限元(SBFEM)的应用,该多边形单元不但继承SBFEM半解析求解裂纹尖端奇异性的特性,而且在模拟复杂结构的网格生成和裂纹扩展上具有更高的通用性。本文首次用该单元模拟了动荷载下复合材料裂纹和夹杂相互作用。动荷载稳定裂纹情况下,PSBFE计算结果同现有文献吻合良好,在此基础上,本文结合基于拓扑的局部网格重剖分方法,模拟了动荷载下夹杂和扩展裂纹相互作用。结果表明,硬质夹杂和软质夹杂对结构的动力应力强度因子分别起到抑制和放大的作用。夹杂尺寸,夹杂大小也会在一定范围内影响动力应力强度因子,尺寸越大距离裂纹越近的夹杂影响越大。

Abstract

Any domain can be discretized with a mesh of arbitrary n-sided ( ) Polygon Scaled Boundary Finite Elements (PSBFE) through Delaunay triangulation automatically. Compared with previous literatures based on SBFEM, PSBFE retains the characteristics of SBFEM in accurately representing orders of singularities at the crack tips yet is more general and flexible in modeling complicated structures and its crack propagation. In this paper, PSBFE is for the first time, applied to the dynamic interactions between the crack and inclusions in composite material. The numerical result of stationary cracks under dynamic load is found consistent with available data in literature. Next, a local remeshing scheme is employed to simulate the dynamic crack propagation. The numerical results demonstrate the shielding and amplification effects of stiff and soft inclusion respectively. It is found that the sizes and positions of inclusions will also affect the dynamic stress intensity factor. The larger and close the inclusion is, the more effect it will has.

 

关键词

裂纹扩展
/ 复合材料 / 多边形单元 / 网格重剖分 / 动力应力强度因子

Key words

crack propagation / composite material / polygon elements / grid remeshing / dynamic stress intensity factor;

引用本文

导出引用
施明光1,3,徐艳杰1,张楚汉1,刘钧玉2,4,. 比例边界有限元模拟裂纹和夹杂动力相互作用[J]. 振动与冲击, 2016, 35(4): 15-21
SHI Mingguang1,3, XU Yanjie1, ZHANG Chuhan1, LIU Junyu2,4. Simulation of dynamic interactions between the crack and inclusions by the Scaled Boundary Finite Element Method[J]. Journal of Vibration and Shock, 2016, 35(4): 15-21

参考文献

[1] Jajam K C, Tippur H V. Role of inclusion stiffness and interfacial strength on dynamic matrix crack growth: An experimental study[J]. International Journal of Solids and Structures. 2012, 49: 1127-1146.
 [2] Lipetzky P, Knesl Z. Crack-particle interaction in a two-phase composite Part II: crack deflection[J]. International journal of fracture. 1995, 73(1): 81-92.
 [3] Lipetzky P, Schmauder S. Crack-particle interaction in two-phase composites Part I: Particle shape effects[J]. International journal of fracture. 1994, 65(4): 345-358.
 [4] Williams R C, Phan A V, Tippur H V, et al. SGBEM analysis of crack–particle (s) interactions due to elastic constants mismatch[J]. Engineering fracture mechanics. 2007, 74(3): 314-331.
 [5] Lei J, Wang Y S, Huang Y, et al. Dynamic crack propagation in matrix involving inclusions by a time-domain BEM[J]. Engineering Analysis with Boundary Elements. 2012, 36(5): 651-657.
 [6] Lei J, Yang Q, Wang Y S, et al. An investigation of dynamic interaction between multiple cracks and inclusions by TDBEM[J]. Composites Science and Technology. 2009, 69(7): 1279-1285.
 [7] Lei J, Zhang C, Yang Q, et al. Dynamic effects of inclusions and microcracks on a main crack[J]. International Journal of Fracture. 2010, 164(2): 271-283.
 [8] Song C, Wolf J P. The scaled boundary finite-element method--alias consistent infinitesimal finite-element cell method--for elastodynamics[J]. Computer Methods in applied mechanics and engineering. 1997, 147(3-4): 329-355.
 [9] Song C M, Wolf J P. Body loads in scaled boundary finite-element method[J]. Computer Methods in Applied Mechanics and Engineering. 1999, 180(1-2): 117-135.
[10] Song C W J. The scaled boundary finite-element
method for anisotropic multimaterial plate with crack.[Z]. Palaiseau, France: 1998.
[11] Song C. Analysis of singular stress fields at multi‐material corners under thermal loading[J]. International journal for numerical methods in engineering. 2006, 65(5): 620-652.
[12] Yang Z J, Deeks A J, Hao H. Transient dynamic fracture analysis using scaled boundary finite element method: a frequency-domain approach[J]. Engineering fracture mechanics. 2007, 74(5): 669-687.
[13] Yang Z J. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method[J]. Engineering Fracture Mechanics. 2006, 73(12): 1711-1731.
[14] Yang Z J, Deeks A J. Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method[J]. International Journal of Fracture. 2007, 143(4): 333-354.
[15] Ooi E T, Yang Z J. Modelling dynamic crack propagation using the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering. 2011, 88(4): 329-349.
[16] Ooi E T, Song C, Tin Loi F, et al. Polygon scaled boundary finite elements for crack propagation modelling[J]. International Journal for Numerical Methods in Engineering. 2012, 91(3): 319-342.
[17] Song C, Tin-Loi F, Gao W. A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges[J]. Engineering Fracture Mechanics. 2010, 77(12): 2316-2336.
[18] Ooi E T, Mingguang S, Song C, et al. Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique[J]. Engineering Fracture Mechanics. 2013, 106: 1-21.
[19] Fedelinski P, Aliabadi M H, Rooke D P. The time-domain DBEM for rapidly growing cracks[J]. International Journal for Numerical Methods in Engineering. 1997, 40(9): 1555-1572.
[20] Nishioka T. Computational dynamic fracture mechanics[J]. International Journal of Fracture. 1997, 86(1): 127-159.
 

PDF(3207 KB)

871

Accesses

0

Citation

Detail

段落导航
相关文章

/