基于电涡流阻尼器的数控加工振动抑制

杨毅青1,2,徐东东1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 177-181.

PDF(2312 KB)
PDF(2312 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 177-181.
论文

基于电涡流阻尼器的数控加工振动抑制

  • 杨毅青1,2,徐东东1,2
作者信息 +

Vibration suppression of NC machining based on eddy current damper

  • YANG Yiqing1,2, XU Dongdong 1,2
Author information +
文章历史 +

摘要

弱刚性零件在数控加工中极易发生变形、让刀等现象,对加工质量及效率构成严重影响。基于电涡流阻尼器利用导体在恒定磁场中运动或者利用时变电磁场在导体上产生电涡流阻尼力,提出并设计适用于弱刚性结构件数控加工振动抑制的电涡流阻尼器结构;结合理论建模,提出四种设计方案并对其减振性能进行测试和比较。模态实验表明,四种阻尼器方案均能较好的对工件振动进行抑制,频响函数幅值最低下降55%;模态参数辨识表明,电涡流阻尼器可使系统阻尼增加70.73%,而对其余动力学参数的影响较小。切削实验表明,该电涡流阻尼器可增加工件临界稳定切深171%,减少切削加工振动信号58%以及降低表面粗糙度89.7%。

Abstract

Large deformation and cutter run-out are apt to occur when machining flexible structures, which quite restrict the machined surface quality and efficiency. Eddy current damper utilizes the motion of conductor in a uniform magnetic field or time-varying electromagnetic field to generate electric eddy current force. A setup is therefore proposed to suppress vibrations of flexible parts during machining process based on the force mentioned above. According to the theoretical model, four damping configurations are proposed, tested and compared. Modal tests show that the amplitude of frequency response function is reduced by 55% maximum. Furthermore, modal parameter identification shows that the dampers can increase the system damping by 70.73%, while other dynamic parameters are little affected. Cutting tests indicate that the eddy current damper can increase critical depth of cut by 171%, attenuate vibration amplitude by 58% and reduce surface roughness by 89.7%.

关键词

电涡流 / 阻尼器 / 数控加工 / 振动抑制

Key words

 eddy current / damper / NC machining / vibration suppression

引用本文

导出引用
杨毅青1,2,徐东东1,2. 基于电涡流阻尼器的数控加工振动抑制[J]. 振动与冲击, 2016, 35(4): 177-181
YANG Yiqing1,2, XU Dongdong 1,2. Vibration suppression of NC machining based on eddy current damper[J]. Journal of Vibration and Shock, 2016, 35(4): 177-181

参考文献

[1] 祝长生. 时变磁场下径向电涡流阻尼器的动力特性[J]. 机械工程学报,2009,45(8):31-36.
Zhu Changsheng. Dynamic performance of a radial eddy current damper under variable-time magnetic field[J]. Journal of Mechanical Engineering, 2009, 45(8): 31-36.
[2] Ebrahimi B, Khamesee M B, Golnaraghi F. A novel eddy current damper: theory and experiment[J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075001.
[3] Sodano H A, Bae J S, Inman D J, et al. Concept and model of eddy current damper for vibration suppression of a beam[J]. Journal of Sound and Vibration, 2005, 288 (4-5): 1177-1196.
[4] Sodano H A, Inman D J. Modeling of a new active eddy current vibration control system[J]. Journal of Dynamic Systems, Measurement and Control-Transactions of the ASME, 2008, 130(2):021009.
[5] Bae J S, Hwang J H, Roh J H, et al. Vibration suppression of a cantilever beam using magnetically tuned-mass-damper[J]. Journal of Sound and Vibration, 2012, 331(26): 5669–5684.
[6] 曹青松,周继惠,李健,等. 自感知电涡流阻尼器建模与特性研究[J]. 振动与冲击, 2013, 32(21): 136-141.
Cao Qingsong, Zhou Jihui, Li Jian,et al. Modeling and characteristics of a self-sensing eddy current damper[J]. Journal of Vibration and Shock, 2013, 32(21): 136-141.
[7] Guillem Q, Joaquim C. Chatter in machining processes: A review[J]. International Journal of Machine Tools and Manufacture,2011,51(5):363-376.
[8] Kolluru K, Axinte D, Becker A. A solution for minimising vibrations in milling of thin walled casings by applying dampers to workpiece surface[J]. CIRP Annals - Manufacturing Technology, 2013, 62(1), 415-418.
[9] Duncan G S, Tummond M F, Schmitz T L. An investigation of the dynamic absorber effect in high speed machining[J]. International Journal of Machine Tools & Manufacture, 2005, 45(4–5): 497–507.
[10] Rashid A, Nicolescu C M. Design and implementation of tuned viscoelastic dampers for vibration control in milling[J]. International Journal of Machine Tools and Manufacture, 2008, 48(9): 1036-1053.
[11] Zhang Y, Sims N D. Milling workpiece chatter avoidance using piezoelectric active damping: a feasibility study[J]. Smart Materials and Structures, 2005, 14(6), N65-N70.
[4] Rashid A, Nicolescu C M. Active vibration control in palletised workholding system for milling[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13), 1626-1636.
[13] 杨恺,崔龙,黄海.基于动力吸振器的空间桁架多自由度振动抑制[J].北京航空航天大学学报,2013,39(3): 295-299.
Yang Kai, Cui Long, Huang Hai. Multi-degree-of-freedom vibration suppression of space trusses based on multiple dynamic vibration absorbers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 29(3): 295-299.
[14] Kamopp D. Permanent magnet linear motors used as variable mechanical damper for vehicle suspensions[J]. Vehicle System Dynamics, 1989, 18:187-200.
[15] Schmid M, Varga P. Analysis of vibration-isolating systems for scanning tunneling microscopes[J]. Ultramicroscopy, 1992, 42-44:1610-1615.
[16] Yang Y Q, Xu D D, Liu Q. Vibration suppression of thin-walled workpiece machining based on the electromagnetic induction[J]. Materials and Manufacturing Processes, 2014, DOI: 10.1080/10426914.2014.962042
[17] 杨毅青,刘强. 数控机床切削稳定性分析及实验研究[J]. 振动与冲击, 2014, 33(22): 101-105.
Yang Yiqing, Liu Qiang. Analysis and experimental investigation on the cutting process stability of machine tool[J]. Journal of Vibration and Shock, 2014, 33(22): 101-105.
[18] Altintaş Y. Manufacturing automation[M]. Cambridge: Cambridge University Press, 2012: 149-158.

PDF(2312 KB)

Accesses

Citation

Detail

段落导航
相关文章

/