基于波有限元法的流固耦合结构波传导问题

倪广健,林杰威

振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 204-209.

PDF(1646 KB)
PDF(1646 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 204-209.
论文

基于波有限元法的流固耦合结构波传导问题

  • 倪广健,林杰威
作者信息 +

Wave Propagation in A Fluid-Structural Coupled System based on Wave Finite Element Method

  • Guangjian Ni  and Jiewei Lin
Author information +
文章历史 +

摘要

本文采用波有限元方法研究流固耦合结构中的波传导问题。该方法以有限元法为基础,首先建立研究对象的有限元法模型,得到模型的动态刚度矩阵。通过对动态刚度矩阵的重新排列组合得到研究对象的传递矩阵,求解传递矩阵的特征值问题可以得到分别代表自由波传递的波数和波模。本研究首先分析独立流体结构和固体结构中的振动问题,并比较了采用波有限元法和理论方法求解得到的固体结构中波数分布情况,验证了模型的正确性。随后采用波有限元法分析流固耦合结构中的波传导问题。波有限元法的应用并不局限于本文所给出的均匀或周期性结构,还可将其应用于缓慢变化的非均匀结构。

Abstract

 Wave propagation in a fluid-structural coupled system was presented here using a combined finite element method and wave approach (Wave finite element method). The method is based on the finite element descriptions of the model and solves eigenvalue problem of the model transfer matrix derived from the dynamic stiffness matrix of the model to give eigenvalues and eigenvectors, which determine free wave propagation. Natural frequencies of the separated structure and fluid were calculated first. Wavenumber distributions in a plate strip were calculated using both the wave finite element method and the analytic method showing the model and the method are accurate. Numerical example of wave propagation in the fluid-structural coupled system was then presented. Moreover, the method is not limited to uniform or periodic structure, but can be extended to non-uniform structures with slowly varying properties.

关键词

波传导 / 流固耦合 / 有限元 / 波有限元

引用本文

导出引用
倪广健,林杰威. 基于波有限元法的流固耦合结构波传导问题[J]. 振动与冲击, 2016, 35(4): 204-209
Guangjian Ni and Jiewei Lin. Wave Propagation in A Fluid-Structural Coupled System based on Wave Finite Element Method[J]. Journal of Vibration and Shock, 2016, 35(4): 204-209

参考文献

[1] M. Petyt, Introduction to finite element vibration analysis, Cambridge University Press, Cambridge, 1990.
[2] F. Fahy, P. Gardonio, Sound and structural vibration: Radiation, transmission and response, 2nd ed., Elsevier Academic Press, Oxford, UK, 2007.
[3] B.R. Mace, Wave reflection and transmission in beams, Journal of Sound and Vibration, 97 (1984) 237-246.
[4] D.W. Miller, A. von Flotow, A travelling wave approach to power flow in structural networks, Journal of Sound and Vibration, 128 (1989) 145-162.
[5] V. Easwaran, V.H. Gupta, M.L. Munjal, Relationship between the impedance matrix and the transfer matrix with specific reference to symmetrical, reciprocal and conservative systems, Journal of Sound and Vibration, 161 (1993) 515-525.
[6] W.X. Zhong, F.W. Williams, On the direct solution of wave propagation for repetitive structures, Journal of Sound and Vibration, 181 (1995) 485-501.
[7] D.M. Mead, Wave Propagation in Continous Periodic Structures: Research Contributions from Southampton, 1964-1995, Journal of Sound and Vibration, 190 (1996) 495-524.
[8] M.N. Ichchou, J.M. Mencik, W. Zhou, Wave finite elements for low and mid-frequency description of coupled structures with damage, Comput. Meth. Appl. Mech. Eng., 198 (2009) 1311-1326.
[9] G. Ni, S.J. Elliott, Wave interpretation of numerical results for the vibration in thin conical shells, Journal of Sound and Vibration, 333 (2014) 2750-2758.
[10] S.J. Elliott, G. Ni, B.R. Mace, B. Lineton, A wave finite element analysis of the passive cochlea, The Journal of the Acoustical Society of America, 133 (2013) 1535-1545.
[11] G. Ni, S.J. Elliott, Wave finite element analysis of an active cochlear model, J Acoust Soc Am, 133 (2013) 3428.
[12] E. de Boer, Mechanics of the cochlea: Modelling efforts, in: P. Dallos, A.N. Popper, R.R. Fay (Eds.) The cochlea, Springer, New York, 1996, pp. 258-317.
[13] A. Craggs, The transient response of a coupled plate-acoustic system using plate and acoustic finite elements, Journal of Sound and Vibration, 15 (1971) 509-528.
[14] L. Brillouin, Wave propagation in periodic structures, Dover Publications, Mineola, N.Y., 2003.
[15] B.R. Mace, D. Duhamel, M.J. Brennan, L. Hinke, Finite element prediction of wave motion in structural waveguides, The Journal of the Acoustical Society of America, 117 (2005) 2835-2843.
[16] D. Duhamel, B.R. Mace, M.J. Brennan, Finite element analysis of the vibrations of waveguides and periodic structures, Journal of Sound and Vibration, 294 (2006) 205-220.
[17] K.G. Graff, Wave motion in elastic solids, Oxford University Press, London, 1991.
[18] L. Cremer, M. Heckl, B.A.T. Petersson, Structure-borne sound: structural vibrations and sound radiation at audio frequencies, Springer, Berlin; New York, 2005.
[19] M. Maess, J. Herrmann, L. Gaul, Finite element analysis of guided waves in fluid-filled corrugated pipes, The Journal of the Acoustical Society of America, 121 (2007) 1313-1323.
[20] M.A. Biot, General Theorems on the Equivalence of Group Velocity and Energy Transport, Physical Review, 105 (1957) 1129.
[21] K.A. Stroud, D.J. Booth, Advanced Engineering Mathematics, Palgrave MacMillan, New York, 2003.
[22] S. Finnveden, Evaluation of modal density and group velocity by a finite element method, Journal of Sound and Vibration, 273 (2004) 51-75.

PDF(1646 KB)

891

Accesses

0

Citation

Detail

段落导航
相关文章

/