考虑机床-磨削交互的工件表面形貌仿真

冯 伟1,2,陈彬强1,2,蔡思捷1,2,姚 斌1,2,罗 琪1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 235-240.

PDF(1569 KB)
PDF(1569 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 235-240.
论文

考虑机床-磨削交互的工件表面形貌仿真

  • 冯 伟1,2,陈彬强1,2,蔡思捷1,2,姚 斌1,2,罗 琪1,2
作者信息 +

Simulation of Surface Topography Considering Process-machine Interaction in Grinding

  • FENG Wei1,2, Chen Binqiang1,2, CAI Sijie1,2, YAO Bin1,2, LUO Qi 1,2
Author information +
文章历史 +

摘要

磨削加工方法是保证加工表面质量的重要手段,机床结构与磨削过程之间存在的交互作用会对工件表面质量产生不利影响。以砂轮端面磨削加工过程为研究对象,在研究磨削工件表面形貌仿真方法的基础上,深入分析了机床结构与磨削过程之间交互作用对工件表面形貌的影响。首先基于砂轮表层磨粒的随机分布特性建立了虚拟砂轮形貌,然后通过对磨削过程中砂轮磨粒与工件几何干涉作用的分析,建立了磨粒运动轨迹方程和工件表面形貌方程。考虑砂轮变形对磨削过程的反向作用,建立了主轴-砂轮结构与磨削过程间的交互模型,采用耦合仿真的方法对机床-磨削交互过程进行了仿真,并考虑磨削过程中的交互作用提出了一种新的磨削工件表面形貌仿真模型,实验结果验证了所给算法的正确性和有效性,该方法为进一步优化磨削工艺参数提供了依据。

Abstract

Grinding is an important means to guarantee the quality of the machined surface, however, the interaction between machine and grinding process causes poor surface quality. Focusing on face grinding, the influence of process-machine interaction on ground surface was analyzed based on the investigation of surface topography simulation. A visual wheel topology was simulated based on the random nature of grains located on the wheel surface. The grain trajectory equation and workpiece topography equation were established based on the analyses of interference between grains and workpiece. The interaction between grinding process and spindle-wheel was modeled considering the inverse influence of wheel deformation on process and simulated by adopting a coupling simulation method. Taking the process-machine interaction into account, a novel simulation model for surface topography of the grinding process was proposed. Grinding test verifies the accuracy and effectiveness of the given algorithm. The method can be further used to optimize the grinding process parameters.

关键词

机床-磨削交互 / 表面形貌 / 仿真

Key words

process-machine interaction / surface topography / simulation

引用本文

导出引用
冯 伟1,2,陈彬强1,2,蔡思捷1,2,姚 斌1,2,罗 琪1,2. 考虑机床-磨削交互的工件表面形貌仿真[J]. 振动与冲击, 2016, 35(4): 235-240
FENG Wei1,2, Chen Binqiang 1,2, CAI Sijie1,2, YAO Bin1,2, LUO Qi 1,2. Simulation of Surface Topography Considering Process-machine Interaction in Grinding[J]. Journal of Vibration and Shock, 2016, 35(4): 235-240

参考文献

[1] Brinksmeier E, Mutlugünes Y, Klocke F, et al. Ultra-precision grinding[J]. CIRP Annals-Manufacturing Technology, 2010, 59(2): 652-671.
[2] 童景琳, 赵波, 吴雁, 等. 二维超声振动磨削陶瓷的表面质量试验研究 [J][J]. 振动与冲击, 2007, 26(10): 177-179.
TONG Jing-lin, ZHAO Bo, WU Yan, et al. Study on surface roughness of nano composite ceramics with 2-dimensional ultrasonic vibration grinding[J]. Journal of Vibration and shock, 2007, 26(10): 177-179.
[3] Zhong Z W, Venkatesh V C. Recent developments in grinding of advanced materials. International Journal of Advanced Manufacturing Technology [J]. 2009, 41 (5-6):468–480.
[4] Brinksmeier E, Aurich J C, Govekar E, et al. Advances in modeling and simulation of grinding processes[J]. CIRP Annals-Manufacturing Technology, 2006, 55(2): 667-696.
[5] Brecher C, Esser M, Witt S. Interaction of manufacturing process and machine tool[J]. CIRP Annals-Manufacturing Technology, 2009, 58(2): 588-607.
[6] Doman D A, Warkentin A, Bauer R. A survey of recent grinding wheel topography models[J]. International Journal of Machine Tools and Manufacture, 2006, 46(3): 343-352.
[7] Zhou X, Xi F. Modeling and predicting surface roughness of the grinding process[J]. International Journal of Machine Tools and Manufacture, 2002, 42(8): 969-977.
[8] Nguyen T A, Butler D L. Simulation of surface grinding process, part 2: interaction of the abrasive grain with the workpiece[J]. International journal of Machine tools and manufacture, 2005, 45(11): 1329-1336.
[9] Darafon A, Warkentin A, Bauer R. 3D metal removal simulation to determine uncut chip thickness, contact length, and surface finish in grinding[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12): 1715-1724.
[10] 巩亚东, 刘月明, 仇健, 等. 点磨削工件微观形貌仿真与试验研究[J]. 机械工程学报, 2012, 48(17): 165-171.
GONG Ya-dong, LIU Yue-ming, Qiu Jian, et al. Research on Simulation and Experiment for Workpiece Micro-surface in Point Grinding[J]. Journal of Mechanical Engineering, 2012, 48(17): 165-171.
[11] 陈东祥, 田延岭.超精密磨削加工表面形貌建模与仿真方法[J]. 机械工程学报, 2010 (13): 186-191.
CHEN Dong-xiang, TIAN Yan-ling, Modeling and Simulation Methodology of the Machined Surface in Ultra-precision Grinding[J]. Journal of Mechanical Engineering, 2010 (13): 186-191.
[12]  吕长飞, 李郝林. 外圆磨削砂轮形貌仿真与工件表面粗糙度预测[J].. 中国机工程, 2012, 23 (6) 666-671.
LU Chang-fei, LI Hao-lin. Simulation of Wheel Topography and Forecasting of Roughness in Cylindrical Grinding[J]. China Mechanical Engineering, 2012, 23 (6) 666-671.
[13] Liu Y, Warkentin A, Bauer R, et al. Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations[J]. Precision Engineering, 2013, 37(3): 758-764.
[14] Cao Y, Guan J, Li B, et al. Modeling and simulation of grinding surface topography considering wheel vibration[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(5-8): 937-945.
[15] Malkin S, Guo C. Grinding technology: theory and application of machining with abrasives[M]. Industrial Press Inc., 2008.
[16] Koshy P, Jain V K, Lal G K. Stochastic simulation approach to
modelling diamond wheel topography[J]. International Journal of Machine Tools and Manufacture, 1997, 37(6): 751-761.
[17] Aurich J C, Bouabid A, Steinmann P, et al. High-Performance Surface Grinding[M]//Process Machine Interactions. Springer Berlin Heidelberg, 2013: 81-100.
[18] 高尚晗, 孟光. 机床主轴系统动力学特性研究进展[J]. 振动与冲击, 2007, 26(6): 103-109.
GAO Shang-han, MENG Guang. Review of dynamic characteristics of spindle systems. Journal of Vibration and shock, 2007, 26(6): 103-109.
[19] Aurich J C, Biermann D, Blum H, et al. Modelling and simulation of process: machine interaction in grinding[J]. Production Engineering, 2009, 3(1): 111-120.
[20] AURICH J C, KIRCH B. Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains[J]. CIRP Journal of Manufacturing Science and Technology, 2012, 5(3): 164-174.
[21] Wei Feng, Bin Yao, BinQiang Chen, et al. Modeling and Simulation of Process-Machine Interaction in Grinding of Cemented Carbide Indexable Inserts[J]. Shock and Vibration, 2014, in press.

PDF(1569 KB)

582

Accesses

0

Citation

Detail

段落导航
相关文章

/