钢板混凝土复合梁在爆炸荷载作用下的损伤评估研究

田志敏1,2,章峻豪1,江世永1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 42-48.

PDF(2495 KB)
PDF(2495 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 42-48.
论文

钢板混凝土复合梁在爆炸荷载作用下的损伤评估研究

  • 田志敏1,2,章峻豪1,江世永1
作者信息 +

Damage assessment of steel-concrete composite beam subjected to blast loading

  • TIAN Zhi-min 1, 2,  ZHANG Jun-hao 1,  JIANG Shi-yong 1
Author information +
文章历史 +

摘要

为满足钢板混凝土复合梁爆炸损伤评估的实际需要,完成了钢板混凝土复合梁与钢筋混凝土梁承载性能的比较试验,研究了两种梁的承载性能与破坏特点,获得了二者的抗力试验曲线、抗弯变形限值及抗力函数。基于钢板混凝土复合梁的等效单自由度运动方程,采用数值求解方法,得出了评估其在爆炸荷载作用下破坏状态的超压-冲量(P-I)等损伤曲线。研究结果表明:钢板混凝土复合梁的承载力、变形限值、临界超压以及临界冲量比钢筋混凝土梁的都要高,前者的抗爆性能更好。

Abstract

In order to meet the practical needs of damage assessment of the steel-concrete composite beams (i.e. the composite beams in short) subjected to blast loading, tests of carrying load capacity of the composite beams were conducted compared with reinforced concrete beams. The carrying load capacities and failure features of the two kinds of beams were studied, and the experimental resistance curves and bending deformation limits as well as the resistance functions of them were obtained. Based on the equivalent single-degree-of-freedom motion equation of the composite beams, the pressure-impulse (i.e. P-I in short ) isodamage curves for assessing the damage status of them were got by means of the numerical simulation method. The research results show that the carrying load capacity, deformation limits, critical overpressure and critical impulse of the composite beams are higher than those of reinforced concrete beams, indicating that the former beams have better blast resistance.

 

关键词

钢板混凝土复合梁 / 变形限值 / 抗力函数 / P-I曲线 / 临界超压 / 临界冲量

Key words

steel-concrete composite beam / deformation limits / resistance function / P-I curve / critical overpressure / critical impulse

引用本文

导出引用
田志敏1,2,章峻豪1,江世永1. 钢板混凝土复合梁在爆炸荷载作用下的损伤评估研究[J]. 振动与冲击, 2016, 35(4): 42-48
TIAN Zhi-min 1, 2, ZHANG Jun-hao 1, JIANG Shi-yong 1. Damage assessment of steel-concrete composite beam subjected to blast loading[J]. Journal of Vibration and Shock, 2016, 35(4): 42-48

参考文献

[1] Quinn L T, Kennedy L J, Mays G C. The response of steel/concrete sandwich panels to close-in explosions//Mclean Virginia: Proceeding of the 8th International Symposium on Interaction of the Effects of Munitions with Structures. 1997: 631-640.
[2] Watson A J, Hulton F G, Pope D J. An experimental study of steel plate bonding to concrete slabs under close-in explosions//Mclean Virginia: Proceeding of the 8th International Symposium on Interaction of the Effects of Munitions with Structures. 1997: 971-979.
[3] Tian Z, Chen J. Bending resistance of steel plate-reinforced concrete beam[J]. Transactions of Tianjin University, 2006, 12: 210-213.
[4] 柳锦春, 方秦, 张亚栋, 赵晓兵. 爆炸荷载作用下内衬钢板的混凝土组合结构的局部效应分析[J]. 兵工学报, 2004, 25(6): 773-776.
Liu Jinchun, Fang Qin, Zhang Yadong, Zhao Xiaobing. Analysis of local effects on steel-backed concrete composite structures under blast loading[J]. Acta Armamentar, 2004, 25(6): 773-776.
[5] Smith P D, Hetherington J G. Blast and ballistic loading of structures[M]. Oxford, UK: Butterworth Heinemann, 1994.
[6] Krauthammer T. Modern protective structures [M]. New York, USA: Taylor & Francis Group, 2008.
[7] Carta G, Stochino F. Theoretical models to predict the flexural failure of reinforced concrete beams under blast loads[J]. Engineering Structures, 2013, 49: 306–315.
[8] Xu J, Wu C, Li Z X. Analysis of direct shear failure mode for RC slabs under external explosive loading[J]. International Journal of Impact Engineering, 2014, 69: 136-148.
[9] Ross C A, Schauble C C. Failure of underground hardened structures subjected to blast loading[R]. University of Florida, 1979.
[10] 方秦, 吴平安. 爆炸荷载作用下影响RC梁破坏形态的主要因素分析[J]. 计算力学学报, 2003, 20(1): 39-42.
Fang Qin, Wu Pingan. Main f actors affecting failure modes of blast loaded RC beams[J]. Chinese Journal of Computational Mechanics, 2003, 20(1): 39-42.
[11] 王年桥. 防护结构计算原理与设计[M]. 南京: 工程兵工程学院, 1998.
[12] TM5-1300 Structures to resist the effect of accidental explosions[S]. Washington DC: US Department of the Army, Navy and Air force, 1990.
[13] PDC TR-06-01 Rev 1 Methodology manual for the single degree of freedom blast effects design spreadsheets[S]. Washington DC: US Army Corps of Engineers, 2008.
[14] PDC TR-06-08 Rev 1 Single degree of freedom structural response limits for antiterrorism design[S]. Washington DC: US Army Corps of Engineers, 2008.
[15] Dragos J, Wu C. A new general approach to derive normalised pressure impulse curves[J]. International Journal of Impact Engineering, 2013, 62: 1-12.
[16] Dragos J, Wu C. Single-Degree-of-Freedom Approach to Incorporate Axial Load Effects on Pressure Impulse Curves for Steel Columns [J]. Journal of Engineering Mechanics, 10.1061/(ASCE)EM.1943-7889.0000818: 1-10.
[17] Fallah A S, Louca L A. Pressure-impulse diagrams for elastic plastic hardening and softening single degree of freedom models subjected to blast loading[J]. International Journal of Impact Engineering, 2007, 34(4): 823-842.
[18] 陈肇元等. 钢筋混凝土结构构件在冲击荷载下的性能: 第4集[M]. 北京: 清华大学出版社, 1986.
[19] Zhang F, Wu C, Wang H, Zhou Y. Numerical simulation of concrete filled steel tube columns against BLAST loads[J]. Thin-Walled Structures, 2015, 95: 82-92.
[20] 师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D]. 天津: 天津大学, 2009: 73-91.
SHI Yanchao. Dynamic response and damage mechanism of reinforced concrete structures under blast loading[D]. Tianjin: Tianjin University, 2009: 73-91.

PDF(2495 KB)

798

Accesses

0

Citation

Detail

段落导航
相关文章

/