时滞位置反馈对一类静电微传感器的吸合不稳定的控制研究

尚慧琳1,宋书峰1,文永蓬2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 81-86.

PDF(1660 KB)
PDF(1660 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (4) : 81-86.
论文

时滞位置反馈对一类静电微传感器的吸合不稳定的控制研究

  • 尚慧琳1,宋书峰1,文永蓬2
作者信息 +

Delayed position feedback control on suppressing pull-in instability of a typical electrostatically actuated microsensor

  •  Huilin Shang 1, Shufeng Song 1, Yongpeng Wen 2
Author information +
文章历史 +

摘要

针对微结构在静电力作用下的吸合不稳定问题,考虑一类典型的单自由度静电驱动微传感器振动系统,将时滞位置反馈施加在系统的直流偏置电压上,研究引起微结构的动态吸合和吸合不稳定的系统参数条件,以及时滞反馈对吸合不稳定的抑制机理。运用Melnikov函数法得到时滞受控系统中引起结构吸合不稳定的交流电压的临界幅值。并基于时滞受控系统的安全域随控制参数的演变,定量上研究时滞反馈对吸合不稳定的控制。数值结果和理论分析均表明:在正的反馈增益系数和较小的时滞量下,时滞位置反馈能够有效地抑制静电驱动微结构的吸合不稳定现象。

Abstract

For investigating pull in and pull-in instability of the microstructure under the electrostatical force, a typical single-freedom electrostatically actuated MEMS sensor is considered. The delayed position feedback is applied on DC bias voltage of the system. The conditions of system parameters for reducing pull-in instability of the microstructure are discussed. And the mechanism of the delayed feedback to improve pull-in stability is investigated in detail. The threshold of AC voltage amplitude for pull-in instability in the delayed controlled system is obtained by the Melnikov method. Basing on the evolution of safe basin of the controlled system with control parameters, the effect of delayed feedback on suppressing pull-in instability is verified quantitatively. It follows from the numerical results and the theoretical analysis that the delayed feedback can be effective in reducing pull-in instability of the electrostatically actuated MEMS structure under a positive feedback gain and a short delay.
 

关键词

安全域 / 时滞 / 吸合不稳定 / 微机电系统 / 分形

Key words

safe basin / time delay / pull-in instability / MEMS / fractal

引用本文

导出引用
尚慧琳1,宋书峰1,文永蓬2. 时滞位置反馈对一类静电微传感器的吸合不稳定的控制研究[J]. 振动与冲击, 2016, 35(4): 81-86
Huilin Shang 1, Shufeng Song 1, Yongpeng Wen 2. Delayed position feedback control on suppressing pull-in instability of a typical electrostatically actuated microsensor[J]. Journal of Vibration and Shock, 2016, 35(4): 81-86

参考文献

[1] Kao P, Tadigadapa S. Micromachined quartz resonator based infrared detector array [J]. Sensors and Actuators A: Physical,2009,149(2):189-192.
[2] Ramini A H, Younis M I, Sue Q. A low-g electrostatically actuated resonant switch [J]. Smart Materials and Structures, 2013, 22, 0964-1726.
[3] Arkan E F, Sacchetto D, Yildiz I, et al., Monolithic integration of Si nanowires with metallic electrodes: NEMS resonator and switch applications [J]. Journal of Micromechanics and Microengineering, 2011, 21(12): 125018.
[4] Zhang W M, Yan H, Peng Z K, Meng G. Electrostatic pull-in instability in MEMS/ NEMS-A review [J]. Sensors and Actuators A: Physical, 2014, 214: 187-218.
[5] Ruzziconi L, Younis M I, Lenci S. An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response [J]. Meccanica, 2011, 48(7):1761-1775.
[6] Mojahedi M, Ahmadian M T, Firoozbakhsh K. Effects of  Casimir and Van der Waals Forces on the Pull-in Instability of the Nonlinear Micro and Nano-bridge Gyroscopes [J]. International Journal of Structural Stability and Dynamics, 2014, 14(2): 1350059.
[7] Zhang Y, Zhao Y P. Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading [J]. Sensors and Actuators A: Physical,2006,127(2):366-380.
[8] Alsaleem F M, Younis M I, Ouakad H M. On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators [J]. Journal of Micromechanics and Microengineering,2009,19(4):045013.
[9] Long Z J, Lee S K, Kim J Y. Estimation of survival probability for a ship in beam seas using the safe basin [J].Ocean Engineering, 2010,37(4):418-424.
[10] Freitas M S T, Viana R L, Grebogi C. Erosion of the safe basin for the transversal oscillations of a suspension bridge [J]. Chaos, Solitons and Fractals, 2003,18(4):829-841.
[11] Wei D Q, Zhang B, Qiu D Y, Luo X S. Effect of noise on erosion of safe basin in power system [J]. Nonlinear Dynamics, 2010, 61(3): 477-482.
[12] Alsaleem F M, Younis M I, Stabilization of electrostatic MEMS resonators using a delayed feedback controller [J]. Smart Materials and Structures,2010,19(3):035016.
[13] Alsaleem F M, Younis M I. Integrity Analysis of Electrically Actuated Resonators with Delayed Feedback Controller [J]. Journal of Dynamic Systems Measurement and Control, 2011, 133(3): 031011.
[14] Shao S, Masri K M, Younis M I. The effect of time-delayed feedback controller on an electrically actuated resonator [J]. Nonlinear Dynamics, 2013, 74(1-2):257-270.
[15] Ye Y Z, Yang G, Deng C B. Time-delay feedback control in a delayed dynamical chaos system and its applications [J]. Chinese Physics B, 2011, 20(1): 010207.
[16] Nbendjo B R N, Woafo P. Active control with delay of horseshoes chaos using piezoelectric absorber on a buckled beam under parametric excitation [J]. Chaos, Solitons and Fractals, 2007, 32(1): 73-79.
[17] Shang H L, Wen Y P. Suppression of chaos in a MEMS resonator by delayed position feedback [J]. Theoretical and Applied Mechanics Letters, 2013, 3(6): 063008.
[18] 尚慧琳,李伟阳,韩元波. 一类相对转动系统的复杂运动及时滞速度反馈控制[J]. 振动与冲击, 2015, 34(12): 127-132.
SHANG Huilin, LI Weiyang, HAN Yuanbo. The complex dynamics of a relative rotation system and its control by delay velocity feedback [J]. Journal of Vibration and Shock, 2015, 34(12): 127-132.
[19] Laura A O, Christopher B B, Kimberly L T. Robust micro-rate sensor actuated by parametric resonance [J]. Sensors and Actuators A, 2009, 152(1): 80–87.
[20] 文永蓬,尚慧琳. 微陀螺动力学建模与非线性分析[J].振动与冲击, 2015, 34(4): 69-74.
WEN Yongpeng, SHANG Huilin. Dynamic modeling and nonlinear analysis for a microgyroscope [J]. Journal of Vibration and Shock, 2015, 34(4): 69-74.
 

PDF(1660 KB)

622

Accesses

0

Citation

Detail

段落导航
相关文章

/