对于液体运载火箭纵向振动的稳定性分析,在建立贮箱内液体的振动模型时,不仅需要考虑结构的弹性特性,还需要考虑液体晃动时的阻尼特性。由于模态阻尼比与一个振动周期内阻尼力做功、平均机械能及模态固有频率相关。因此可以先通过结构与液体的耦合振动分析确定其模态,进而分别计算液体与结构接触面、自由面以及液体内部阻尼力做功,同时计算平均机械能,从而得到模态阻尼比。在计算模态阻尼比时,对耦合振动的模态分析、液体内部流场计算均采用等效比拟的方法,为充分利用通用程序计算创造了条件。此方法不仅能够提高效率,同时也便于工程上的应用。
Abstract
When conducting stability analysis to the longitudinal vibration of liquid rocket and establishing the vibration model of liquid inside of the tank, we need to consider the elastic characteristic of structure, as well as the damping character of liquid shaking. Due to the fact that the modal damping ratio is correlated to the work of damping force per vibration period, mean mechanical energy, and the modal nature frequency, we can first get the modal via analyzing the coupled vibrations of structure and liquid, and then calculate the work of the contact surface between liquid and structure, free surface and inner damping force, as well as mechanical energy, so as to achieve the modal damping ratio. The heat flux analogy method, which is adapted in the modal analyze of coupled vibration and the calculation of liquid inner fluid area, enables us to take full advantage of general program in calculation, which not only improves efficiency, but facilitates engineering application as well.
关键词
液固耦合振动 /
充液贮箱 /
模态 /
阻尼比
{{custom_keyword}} /
Key words
liquid-structure coupling vibration /
tank /
modal /
damping ratio
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 马驰骋,张希农,罗亚军,等. 变质量矩形贮箱流固耦合系统动力学特性分析[J]. 西安交通大学学报,2014,48(7):109-116.
MA Chi-cheng, ZHANG Xi-nong, LUO Ya-jun, et al. Dynamic Analysis on a Fluid-Structure Coupling System with Variable Mass in a Rectangular Tank[J]. Journal of xi’an jiaotong university,2014,48(7):109-116.
[2] Fox, Kuttler D W. Sloshing frequencies[J]. Journal of Mechanics and Applied Mathematics and Physics,1983,34(5):668-696.
[3] 朱 琳,唐国安,柳征勇,等. 推进剂与贮箱液固耦合振动的动力学分析[J]. 振动与冲击,2012,31(5):139-144.
ZHU Lin, Tang Guo-an, LIU Zheng-yong, et al. Dynamic analysis for fluid-structure coupled vibration of propellants and fuel tank [J]. Journal of vibration and shock, 2012, 31(5):139-144.
[4] 朱昶帆,唐国安,张美艳. 考虑推进剂晃动的火箭液固耦合分析的比拟算法[J]. 动力学与控制学报,2014,12(3):239-242.
ZHU Chang-fan, TANG Guo-an, ZHANG Mei-yan. The analogy method to coupling analysis of rockets comsidering propellant sloshing[J]. Journal of Dynamics and Control, 2014,12(3),239-242.
[5] Case K M, Parkinson W C. Damping of surface waves in an incompressible liquid[J].J.Fluid Mech.1957,2:172-184.
[6] Henderson D M, Miles J W. Surface-wave damping in a circular cylinder with a fixed contact line[J]. J. Fluid Mech,1994,275:285-299.
[7] Miles J W, Henderson D M. A note on interior vs. boundary-layer damping of surface waves in a circular cylinder[J].J.Fluid.Mech,1998,364:319-323.
[8] Martel C, Nicolas J A, Vega J M. Surface-wave damping in a brimful circular cylinder[J].J.Fluid Mech,1998,360:213-228.
[9] 王 为,李俊峰,王天舒. 航天器贮箱内液体晃动阻尼研究(一)[J]. 宇航学报,2005,26(6):687-693.
WANG Wei, LI Jun-feng, WANG Tian-shu. Study on sloshing damping in a contanier of spacecraft ( Part I ): Theory[J]. Journal of Astronautics, 2005, 26(6):687-693.
[10] 王 为,李俊峰,王天舒. 航天器贮箱内液体晃动阻尼研究(二)[J]. 宇航学报,2005,27(2):177-181.
WANG Wei, LI Jun-feng, WANG Tian-shu. Study on sloshing damping in a contanier of spacecraft ( Part II ): Theory[J]. Journal of Astronautics, 2005, 27(2):177-181.
[11] 夏恒新,王为,宝音贺西等. 带球形底的圆柱容器中液体小幅晃动的实验研究和有限元分析[J]. 动力学与控制学报,2009,7(1):66-70.
Xia Hengxin, Wang Wei, Baoyin Hexi et al. Experiment and FEM analysis of liquid sloshing with small amplitude in a circular cylindrical tank with a spherical bottom[J]. Journal of Dynamics and Control, 2009, 7(1):66-70.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}