人-桥竖向耦合振动计算方法

谢旭,钟婧如,张鹤,张治成

振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 108-114.

PDF(2415 KB)
PDF(2415 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 108-114.
论文

人-桥竖向耦合振动计算方法

  • 谢旭,钟婧如,张鹤,张治成
作者信息 +

Calculation method for vertical human-bridge dynamic interaction

  • XIE Xu, ZHONG Jingru, ZHANG He, ZHANG Zhicheng
Author information +
文章历史 +

摘要

为了分析轻质人行桥的人-桥竖向耦合振动,建立了基于双脚支撑人体计算模型的人-桥耦合振动方程。根据行人在刚性地面行走时的步伐荷载计算结果与文献给出的步伐荷载时程曲线对比,验证了双脚支撑人体计算模型能较好模拟行人的脚步力特性。以一座跨度22.8m、第一阶竖弯自振频率7.23Hz的铝合金人行桥为例,运用Monte Carlo法模拟人群的步行参数,形成不同密度人群过桥的随机工况,并用直接积分法计算了考虑人群-桥竖向耦合振动的铝合金人行桥动力响应。计算结果表明,当人群密度较大时,考虑人桥耦合的人致振动卓越频率趋于分散,其振动响应明显小于不考虑耦合影响的计算结果。

Abstract

In order to investigate the vertical human-bridge dynamic interaction of lightweight footbridges, a vertically coupling dynamic equitation based on bipedal pedestrian model is developed. A comparison between the simulated foot force on rigid ground and the curve from reference shows that the bipedal walking model provided in this paper can closely simulate the feature of ground reaction force. Rational ranges of the parameters of this bipedal model are discussed. A 22.8m-span aluminum alloy footbridge (with the 1st vertical bending frequency of 7.23Hz) is taken as the case to calculate the structural dynamic responses under vertical crowd-bridge interaction. Random crowd conditions of different densities are simulated with the generation of stochastic walking parameters by Monte-Carlo method, and the direct integral method is used for numerical analysis. The results indicate that, as the pedestrian density rises, the predominant frequencies of human-bridge interaction vibration tend to disperse, of which the responses are much less than the results that not consider the interaction.

关键词

人行桥 / 耦合振动 / 舒适性 / 步伐荷载 / 随机人群

引用本文

导出引用
谢旭,钟婧如,张鹤,张治成. 人-桥竖向耦合振动计算方法[J]. 振动与冲击, 2016, 35(5): 108-114
XIE Xu, ZHONG Jingru, ZHANG He, ZHANG Zhicheng. Calculation method for vertical human-bridge dynamic interaction[J]. Journal of Vibration and Shock, 2016, 35(5): 108-114

参考文献

[1]. 程晓东. 新型铝合金结构在城市人行天桥中的应用[J]. 桥梁建设, 2007 (6): 38-41.
Cheng xiao-dong. Application of new type of aluminum alloy structure to urban pedestrian overpass[J]. Bridge Construction, 2007 (6): 38-41.
[2]. 中华人民共和国建设部. CJJ69-95. 城市人行天桥与人行地道技术规范[S]. 北京:中国建筑工业出版社,1996.
Ministry of Housing and Urban-Rural Development of the People’s republic of China. CJJ 69-1995. Technical specifications of urban pedestrian overcrossing and underpass[S]. Beijing: China Architecture & Building Press, 1996.
[3]. Hivoss(Human induced vibration of steel structure). EN03-2007. Design of footbridges [S]. Germany: 2008.
[4]. Stetra, Technical guide footbridges- Assessment of vibrational behavior of footbridges under pedestrian loading [S].  Paris: Technical Guide, 2006.
[5]. British Standards Association. BS 5400. Steel, Concrete and Composite Bridge – Part 2: Specification for Loads [S]. London: British Standards Association, 1978.
[6]. Živanović S, Pavic A, Reynolds P. Vibration serviceability of footbridges under human-induced excitation: a literature review [J]. Journal of Sound and Vibration, 2005, 279(1): 1-74.
[7]. Blanchard J, Davies B L, Smith J W. Design criteria and analysis for dynamic loading of footbridges[C]. In: Symposium on Dynamic Behavior of Bridges, eds. Proceeding of Symposium on Dynamic Behaviour of Bridge. Crowthorne: Transport and Road Research Laboratory, 1977. 90-100.
[8]. Bachmann H, Ammann W. Vibrations in structures: induced by man and machines[M]. Zurich: IABSE-AIPC-IVBH, 1987.13-43..
[9]. Ohlsson S V. Floor vibrations and human discomfort[D]. Goteborg: Chalmers University of Technology, Division of Steel and Timber Structures, 1982.
[10]. Živanović S, Pavić A, Reynolds P. Probability-based prediction of multi-mode vibration response to walking excitation[J]. Engineering Structures, 2007, 29(6): 942-954.
[11]. Venuti F, Bruno L. Crowd-structure interaction in lively footbridges under synchronous lateral excitation: A literature review[J]. Physics of Life Reviews, 2009, 6(3): 176-206.
[12]. Bocian M, Macdonald J H G, Burn J F. Biomechanically inspired modelling of pedestrian-induced forces on laterally oscillating structures[J]. Journal of Sound and Vibration, 2012, 331(16): 3914-3929.
[13]. 法永生, 李东, 孙翠华. 人行桥随机人行荷载下的振动分析及其舒适度评价的新方法[J]. 振动与冲击, 2008, 27(1): 119-123.
Fa Yong-sheng, Li Dong, Sun Cui-hua. Vibration analysis for a footbridge under stochastic pedestrian load and a new method for comfort evaluation[J]. Journal of Vibration and Shock, 2008, 27(1): 119-123.
[14]. 李红利, 陈政清. 考虑荷载随机性的人行桥人致振动计算方法研究[J]. 湖南大学学报: 自然科学版, 2013, 40(10): 22-31.
Li Hong-li, Chen Zheng-qing. A calculation method for footbridge vibration under stochastic pedestrian loading[J]. Journal of Hunan University(Natural Sciences), 2013, 40(10): 22-31.
[15]. Racic V, Pavic A, Brownjohn J M W. Experimental identification and analytical modelling of human walking forces: literature review [J]. Journal of Sound and Vibration, 2009, 326(1): 1-49.
[16]. Dallard P, Fitzpatrick A J, Flint A, et al. The London millennium footbridge[J]. Structural Engineer, 2001, 79(22): 17-21.
[17]. Ingolfsson E T, Georgakis C T, Ricciardelli F, et al. Experimental identification of pedestrian-induced lateral forces on footbridges [J]. Journal of Sound and Vibration, 2011, 330(6): 1265-1284.
[18]. 袁旭斌. 人行桥人致振动特性研究[D]. 上海:同济大学,2006.
Yuan Xu-bin. Research on pedestrian-induced vibration of footbridge[D]. Shanghai: Tongji University, 2006.
[19]. 宋志刚,张尧. 人-桥侧向动力相互作用下的动力放大系数分析[J].振动与冲击,2015,34(1):19-23.
Song Zhi-gang, Zhang Yao. Analysis of the dynamic amplification factor of lateral structural vibration induced by crowd-bridge interaction[J]. Journal of Vibration and Shock, 2015, 34(1): 19-23.
[20]. Sachse R, Pavic A, Reynolds P. Human-structure dynamic interaction in civil engineering dynamics: A literature review [J]. Shock and Vibration Digest, 2003, 35(1): 3-18.
[21]. Ellis B R. Human-structure interaction in vertical vibrations [J]. Proceedings of the ICE-Structures and Buildings, 1997, 122(1): 1-9.
[22]. 李红利, 陈政清. 人-桥竖向动力相互作用效应理论与试验研究[J]. 土木工程学报, 2014, 47(6): 78-87.
Li Hong-li, Chen Zhengqing. Analytical and experimental study on vertically dynamic interaction between human and bridge[J]. China Civil Engineering Journal, 2014, 47(6): 78-87.
[23]. Qin J W, Law S S, Yang Q S, et al. Pedestrian–bridge dynamic interaction, including human participation [J]. Journal of Sound and Vibration, 2013, 332(4): 1107-1124.
[24]. International Federation for Structural Concrete, Task Group 1.2. Guidelines for the Design of Footbridges: Guide to Good Practice [M]. Switzerland: fib, 2005. 30.
[25]. Whittington B R, Thelen D G. A simple mass-spring model with roller feet can induce the ground reactions observed in human walking [J]. Journal of Biomechanical Engineering, 2009, 131(1): 011013.
[26]. Geyer H, Seyfarth A, Blickhan R. Compliant leg behavior explains basic dynamics of walking and running[J]. Proceedings of the Royal Society B: Biological Sciences, 2006, 273(1603): 2861-2867.
[27]. Wheeler J E. Prediction and control of pedestrian-induced vibration in footbridges [J]. Journal of the Structural Division, 1982, 108(9): 2045-2065.

PDF(2415 KB)

979

Accesses

0

Citation

Detail

段落导航
相关文章

/