In order to investigate the vertical human-bridge dynamic interaction of lightweight footbridges, a vertically coupling dynamic equitation based on bipedal pedestrian model is developed. A comparison between the simulated foot force on rigid ground and the curve from reference shows that the bipedal walking model provided in this paper can closely simulate the feature of ground reaction force. Rational ranges of the parameters of this bipedal model are discussed. A 22.8m-span aluminum alloy footbridge (with the 1st vertical bending frequency of 7.23Hz) is taken as the case to calculate the structural dynamic responses under vertical crowd-bridge interaction. Random crowd conditions of different densities are simulated with the generation of stochastic walking parameters by Monte-Carlo method, and the direct integral method is used for numerical analysis. The results indicate that, as the pedestrian density rises, the predominant frequencies of human-bridge interaction vibration tend to disperse, of which the responses are much less than the results that not consider the interaction.
XIE Xu, ZHONG Jingru, ZHANG He, ZHANG Zhicheng.
Calculation method for vertical human-bridge dynamic interaction[J]. Journal of Vibration and Shock, 2016, 35(5): 108-114
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]. 程晓东. 新型铝合金结构在城市人行天桥中的应用[J]. 桥梁建设, 2007 (6): 38-41.
Cheng xiao-dong. Application of new type of aluminum alloy structure to urban pedestrian overpass[J]. Bridge Construction, 2007 (6): 38-41.
[2]. 中华人民共和国建设部. CJJ69-95. 城市人行天桥与人行地道技术规范[S]. 北京:中国建筑工业出版社,1996.
Ministry of Housing and Urban-Rural Development of the People’s republic of China. CJJ 69-1995. Technical specifications of urban pedestrian overcrossing and underpass[S]. Beijing: China Architecture & Building Press, 1996.
[3]. Hivoss(Human induced vibration of steel structure). EN03-2007. Design of footbridges [S]. Germany: 2008.
[4]. Stetra, Technical guide footbridges- Assessment of vibrational behavior of footbridges under pedestrian loading [S]. Paris: Technical Guide, 2006.
[5]. British Standards Association. BS 5400. Steel, Concrete and Composite Bridge – Part 2: Specification for Loads [S]. London: British Standards Association, 1978.
[6]. Živanović S, Pavic A, Reynolds P. Vibration serviceability of footbridges under human-induced excitation: a literature review [J]. Journal of Sound and Vibration, 2005, 279(1): 1-74.
[7]. Blanchard J, Davies B L, Smith J W. Design criteria and analysis for dynamic loading of footbridges[C]. In: Symposium on Dynamic Behavior of Bridges, eds. Proceeding of Symposium on Dynamic Behaviour of Bridge. Crowthorne: Transport and Road Research Laboratory, 1977. 90-100.
[8]. Bachmann H, Ammann W. Vibrations in structures: induced by man and machines[M]. Zurich: IABSE-AIPC-IVBH, 1987.13-43..
[9]. Ohlsson S V. Floor vibrations and human discomfort[D]. Goteborg: Chalmers University of Technology, Division of Steel and Timber Structures, 1982.
[10]. Živanović S, Pavić A, Reynolds P. Probability-based prediction of multi-mode vibration response to walking excitation[J]. Engineering Structures, 2007, 29(6): 942-954.
[11]. Venuti F, Bruno L. Crowd-structure interaction in lively footbridges under synchronous lateral excitation: A literature review[J]. Physics of Life Reviews, 2009, 6(3): 176-206.
[12]. Bocian M, Macdonald J H G, Burn J F. Biomechanically inspired modelling of pedestrian-induced forces on laterally oscillating structures[J]. Journal of Sound and Vibration, 2012, 331(16): 3914-3929.
[13]. 法永生, 李东, 孙翠华. 人行桥随机人行荷载下的振动分析及其舒适度评价的新方法[J]. 振动与冲击, 2008, 27(1): 119-123.
Fa Yong-sheng, Li Dong, Sun Cui-hua. Vibration analysis for a footbridge under stochastic pedestrian load and a new method for comfort evaluation[J]. Journal of Vibration and Shock, 2008, 27(1): 119-123.
[14]. 李红利, 陈政清. 考虑荷载随机性的人行桥人致振动计算方法研究[J]. 湖南大学学报: 自然科学版, 2013, 40(10): 22-31.
Li Hong-li, Chen Zheng-qing. A calculation method for footbridge vibration under stochastic pedestrian loading[J]. Journal of Hunan University(Natural Sciences), 2013, 40(10): 22-31.
[15]. Racic V, Pavic A, Brownjohn J M W. Experimental identification and analytical modelling of human walking forces: literature review [J]. Journal of Sound and Vibration, 2009, 326(1): 1-49.
[16]. Dallard P, Fitzpatrick A J, Flint A, et al. The London millennium footbridge[J]. Structural Engineer, 2001, 79(22): 17-21.
[17]. Ingolfsson E T, Georgakis C T, Ricciardelli F, et al. Experimental identification of pedestrian-induced lateral forces on footbridges [J]. Journal of Sound and Vibration, 2011, 330(6): 1265-1284.
[18]. 袁旭斌. 人行桥人致振动特性研究[D]. 上海:同济大学,2006.
Yuan Xu-bin. Research on pedestrian-induced vibration of footbridge[D]. Shanghai: Tongji University, 2006.
[19]. 宋志刚,张尧. 人-桥侧向动力相互作用下的动力放大系数分析[J].振动与冲击,2015,34(1):19-23.
Song Zhi-gang, Zhang Yao. Analysis of the dynamic amplification factor of lateral structural vibration induced by crowd-bridge interaction[J]. Journal of Vibration and Shock, 2015, 34(1): 19-23.
[20]. Sachse R, Pavic A, Reynolds P. Human-structure dynamic interaction in civil engineering dynamics: A literature review [J]. Shock and Vibration Digest, 2003, 35(1): 3-18.
[21]. Ellis B R. Human-structure interaction in vertical vibrations [J]. Proceedings of the ICE-Structures and Buildings, 1997, 122(1): 1-9.
[22]. 李红利, 陈政清. 人-桥竖向动力相互作用效应理论与试验研究[J]. 土木工程学报, 2014, 47(6): 78-87.
Li Hong-li, Chen Zhengqing. Analytical and experimental study on vertically dynamic interaction between human and bridge[J]. China Civil Engineering Journal, 2014, 47(6): 78-87.
[23]. Qin J W, Law S S, Yang Q S, et al. Pedestrian–bridge dynamic interaction, including human participation [J]. Journal of Sound and Vibration, 2013, 332(4): 1107-1124.
[24]. International Federation for Structural Concrete, Task Group 1.2. Guidelines for the Design of Footbridges: Guide to Good Practice [M]. Switzerland: fib, 2005. 30.
[25]. Whittington B R, Thelen D G. A simple mass-spring model with roller feet can induce the ground reactions observed in human walking [J]. Journal of Biomechanical Engineering, 2009, 131(1): 011013.
[26]. Geyer H, Seyfarth A, Blickhan R. Compliant leg behavior explains basic dynamics of walking and running[J]. Proceedings of the Royal Society B: Biological Sciences, 2006, 273(1603): 2861-2867.
[27]. Wheeler J E. Prediction and control of pedestrian-induced vibration in footbridges [J]. Journal of the Structural Division, 1982, 108(9): 2045-2065.