层间过渡约束阻尼结构动力响应的分布参数传递函数解

燕碧娟 张文军,李占龙,孙大刚

振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 186-190.

PDF(1570 KB)
PDF(1570 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 186-190.
论文

层间过渡约束阻尼结构动力响应的分布参数传递函数解

  • 燕碧娟 张文军,李占龙,孙大刚
作者信息 +

Distributed parameter transfer function method for dynamic response of constrained damping structure with transition layer

  • YAN Bi-juan, ZHANG Wen-jun, LI Zhan-long, SUN Da-gang
Author information +
文章历史 +

摘要

针对传统约束阻尼结构振动能耗散有限问题,引入“层间过渡层”设计的概念,提出一种层间过渡约束阻尼结构,采用分布参数传递函数法对该结构进行了动力响应分析。经推导,得到了阻尼结构的各阶损耗因子和频率的解析解,并进行了有限元仿真验证,二者计算结果吻合良好。以悬臂阻尼板为例,探讨了过渡层参数行为对其频响特性的影响,结果表明,在结构振动时,过渡层可将变形传递给阻尼层,起到放大阻尼层的剪切变形作用,从而耗散更多的振动能量;同时还讨论了过渡层的厚度、剪切模量、密度与泊松比对结构固有频率和损耗因子的影响,为进一步优化工作打下了良好基础。

Abstract

To solve limited vibration energy consumption of traditional constrained damping structure, the concept of “transition layer" was introduced and a type of constrained damping structure with transition layer was put forward. The dynamic response for this damping structure was analyzed through the distributed parameter transfer function method. The analytical solution of structural loss factor and frequency for a cantilever damping plate is obtained through derivation, and a finite element simulation was also done. The calculation results of above two methods were in good agreement. The impacts of transition layer’s parameters behavior on the cantilever damping plate’s frequency characteristics were discussed. The results show that the transition layer could transfer deformation to the damping layer and enlarge shear deformation effect of the damping layer, so as to dissipate more vibration energy when the structure vibrates. At the same time, the effects of thickness and shear modulus of the transition layer on structural natural frequency and loss factor were also discussed, this has laid a good foundation for the further optimize.
 

关键词

传递函数法 / 过渡层 / 约束阻尼 / 动力响应

Key words

transfer function method / transition layer / constrained damping / dynamic response

引用本文

导出引用
燕碧娟 张文军,李占龙,孙大刚 . 层间过渡约束阻尼结构动力响应的分布参数传递函数解[J]. 振动与冲击, 2016, 35(5): 186-190
YAN Bi-juan, ZHANG Wen-jun, LI Zhan-long, SUN Da-gang. Distributed parameter transfer function method for dynamic response of constrained damping structure with transition layer[J]. Journal of Vibration and Shock, 2016, 35(5): 186-190

参考文献

[1] Zheng W G, Lei Y F, Li S D. Topology optimization of passive constrained layer damping with partial coverage on plate[J].Shock and Vibration,2013, 20(2):199-211.
[2] 舒歌群, 赵文龙, 梁兴雨, 陈宇,等. 约束阻尼结构的振动分析及结构参数优化研究[J]. 西安交通大学学报,2014, 48(3):108-114.
SHU Ge-qun, ZHAO Wen-long ,  LIANG Xing-yu,   CHEN Yu , et al. Vibration analysis and optimization of composite sStructure with constrained-layer damping treatment[J]. Journal of Xi'an Jiaotong University, 2014, 48(3):108-114.
[3] Kumar S, Kumar R. Theoretical and experimental vibration analysis of rotating beams with combined ACLD and Stressed Layer Damping treatment[J]. Applied Acoustics, 2013, 74(5):675-693.
[4] Lepoittevin G, Kress G. Optimization of segmented constraining layer damping with mathematical programming using strain energy analysis and modal data[J]. Material Design, 2010,31(1) :14–24.
[5] J.X. Gao, W.H. Liao. Vibration analysis of simply supported beams with enhanced self-sensing active constrained layer damping treatments[J]. Journal of Sound and Vibration.2005, 280(1-2):329-357.
[6] SUN Da-gang, ZHANG Xin, SONG Yong, YAN Bi-juan. Optimization for sandwich damping composite structure used in sprocket of crawler vehicles[J]. Sandwich Structures and Materials,2012,14(1):95-110.
[7] 李恩奇, 唐国金, 雷勇军, 李道奎. 约束层阻尼板动力学问题的传递函数解[J]. 国防科技大学学报, 2008,30(1):5-9.
LI En-qi, TANG Guo- jin, LEI Yong-jun, LI Dao–kui. Dynamic Analysis of Constrained Layer Damping Plate by the Transfer Function Method[J]. Journal of National University Of Defense Technology, 2008,30(1):5-9.
[8] 杨 坤, 梅志远 , 李华东. 复合材料夹层梁动力响应的传递函数法求解[J]. 华中科技大学学报:自然科学版. 2013, 41(5):39-44.
YANG Kun, MEI Zhi-yuan, LI Hua-dong.Solving dynamic
response for composite sandwich beams by transfer function method[J].Journal Of Huazhong University Of Science and T-echnology. Nature Science. 2013, 41(5):39-44.
[9] Yang B, Tan C A. Transfer function of one-dimension distributed Parameter system[J]. ASME Journal of Applied Mechanies, 1992, 59(4):1009-1014.
[10] Susanto K S.Design, modeling and analysis of piezoelectric forceps actuator[D]. Los Angeles: Department of Mechanical Engineering, University of Southern California, 2007.
[11] 李恩奇, 雷勇军, 唐国金, 李道奎. 基于传递函数方法的约束层阻尼梁动力学分析[J]. 振动与冲击,2007,26(2):75-78.
LI En-qi, LEI Yong-jun, TANG Guo- jin, LI Dao–kui. Dynamic analysis of a constrained layer damping beam by transfer function method[J]. Journal of Vibration and Shock, 2007, 26(2):75-78.
[12] Yellin J. M., Shen I. Y., Reinhall P. G., and Huang P., “An analytical and experimental analysis for a one-dimensional passive stand-Off layer damping treatment”, ASME Journal of Vibration and Acoustics, Vol. 122, pp. 440-447, 2000.
[13] 周建平,雷勇军.分布参数系统的传递函数方法[M].北京:科学出版社,2010.
ZHOU Jian-ping, LEI Yong-jun. Distributed parameter systems transfer function method[M].Beijing: Science Press, 2010.
 

PDF(1570 KB)

Accesses

Citation

Detail

段落导航
相关文章

/