为分析悬臂梁易损部件在矩形脉冲激励下的振动响应,推导出悬臂梁在悬臂端处动态应力的近似解析解,得到最大应力与矩形脉冲峰值之间的关系,分析结果表明:在速度变化量一定时,最大应力随加速度脉冲幅值的增加而增加,但会无限逼近极限值。最后建立了易损件-质量主体在矩形脉冲激励下的有限元模型,并与解析解进行了对比,发现运用2阶振动模态即可得到精确的悬臂梁的应力响应,所取得的研究成果为具有悬臂梁式易损件在蜂窝纸板缓冲作用下的防护提供理论基础。
Abstract
In order to analyze dynamic stress response of cantilever beam under the excitation of rectangular acceleration pulse, relationship between maximum stress at the cantilevered end and rectangular acceleration pulse amplitude was deduced, which shows that the maximum stress increases with increasing of the acceleration amplitude but approaches the limit given the velocity change for acceleration pulse is constant. Finally, analytical method was verified by finite element results, meanwhile 2-order vibration modes are enough to give a good estimation for the stress response of cantilever, which can provide theoretical foundation for the electronic product with cantilever beam type when honeycomb paperboard used as cushioning material.
关键词
悬臂梁 /
易损件 /
有限元 /
加速度脉冲
{{custom_keyword}} /
Key words
Cantilever beam /
critical component /
finite element model /
acceleration pulse
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Kim S C,Cho D G, Kim T G,et al. Finite element analysis for shock resistance evaluation of cushion-packaged multifunction printer considering internal modules[J]. Journal of Electronic Packaging,2013,135(4):article(041001).
[2] Goyal S, Papadopoulos JM, Sullivan PA. Shock protection of portable electronics: shock response spectrum, damage boundary approach, and beyond[J].Shock and Vibration,1997,4(3):169–91.
[3] 卢富德,陶伟明,高德.瓦楞纸板串联缓冲系统动力学响应[J].振动与冲击,2012 ,31 (21): 31-34.
Lu Fu-de,Tao Wei-ming,Gao De. Dynamic response of a series cushioning packaging system made of multi-layer corrugated paperboard [J]. Journal of Vibration and Shock, 2012 ,31 (21): 30-32.
[4] Subir E.Is the maximum acceleration an adequate criterion of the dynamic strength of a structural element in an electronic product[J].IEEE Transactions on Components Packaging and Manufacturing Technology A,1997, 20(4):513–517.
[5] Luan J –E, Tee T Y, Pek E,etal. Dynamic responses and solder joint reliability under board level drop test[J]. Microelectronics Reliability ,2007,47(2-3): 450–460
[6] Zhou CY, Yu TX, Lee RSW. Drop/impact tests and analysis of typical portable electronic devices. International Journal of Mechanical Sciences, 2008, 50(5): 905-917
[7] Zhou C Y, Yu T X. Analytical models for shock isolation of typical components in portable electronics[J]. International Journal of Impact Engineering ,2009,36(12) :1377–1384
[8] 卢富德,陶伟明,高德.具有简支梁式易损部件的产品包装系统跌落冲击研究[J].振动与冲击,2012 ,31 (15): 79- 81.
Lu Fu-de,Tao Wei-ming,Gao De.Drop imact analysis on item packaging system with beam type elastic critical component[J]. Journal of Vibration and Shock, 2012 ,31 (15): 79- 81
[9] 卢富德,高德.考虑蜂窝纸板箱缓冲作用的产品包装系统跌落冲击研究[J].振动工程学报,2012,25(3):335- 341.
LU Fu-de,GAO De. Study on drop impact of packaging system considering the cushioning action of honeycomb paperboard box [J].Journal of Vibration Engineering, 2012,25(3):335-341.
[10] Wang Z W, E Y P. Energy-absorbing properties of paper honeycombs under low and intermediate strain rates[J].Packaging Technology and Science ,2012,25(3): 173–185.
[11] 王志伟,姚著.蜂窝纸板冲击压缩的试验研究和有限元分析[J].机械工程学报,2012,48(12):49-55
WANG Zhiwei,YAO Zhu. Experimental investigation and finite element analysis for impact compression of honeycomb paperboards[J]. Journal of Mechanical Engineering, 2012,48(12):49-55
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}