工字形钢柱的爆炸作用分布特征与计算研究

杨涛春,3, 陆勇2,李国强1,陈素文1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 27-38.

PDF(5866 KB)
PDF(5866 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 27-38.
论文

工字形钢柱的爆炸作用分布特征与计算研究

  • 杨涛春 ,3, 陆勇2,李国强1,陈素文1
作者信息 +

The distribution and calculation of blast loading for I-shaped steel column subjected to explosion

  • YANG Taochun1,3, LU Yong2, LI Guoqiang1, CHEN Suwen1
Author information +
文章历史 +

摘要

为研究工字形钢柱上的爆炸荷载特征,明确在不同爆炸条件下工字形钢柱的破坏形式,通过数值计算和试验数据相结合,在三种不同爆炸类型条件下,对钢柱不同位置测点的冲击波曲线形式进行分析,并对钢柱不同翼缘的爆炸荷载水平及竖向分布形式进行总结,给出工字形钢柱上爆炸作用的确定方法。研究结果表明:当爆炸作用沿钢柱强轴时,荷载在翼缘宽度上可按均匀分布,而随近、中、远爆炸类型的变化,荷载沿钢柱竖向分别呈双曲线、梯形和矩形分布特征,而荷载峰值可按TM5-855中试验数据确定;当爆炸作用沿钢柱弱轴时,荷载在腹板上可按均匀分布,而在翼缘上呈三角形分布特征,荷载峰值可按TM5-855中试验数据值乘以相应的放大系数得到;爆炸荷载对钢柱响应形式影响显著,随着爆炸距离的增大,钢柱由局部破坏向整体破坏转变。

Abstract

To investigate the characteristics of blast loading and the failure mode for I-shaped steel column under different explosion type, numerical calculation and test data are applied together. The time history of overpressure for different measuring points is analyzed in detail. The spatial distribution of blast loading for the steel column is evaluated. The results are showed that load on the flange width, when explosion along strong axis, can be assumed distributed. With the change of near, medium and far explosion type, load along vertical direction of steel columns were hyperbolic, trapezoidal and rectangular distribution respectively. The peak load can be determined according to test data in TM5-855. Load on web, when explosion along weak axis, can be assumed distributed while triangular distribution on flange. The peak load can be determined according to the product of test data in TM5-855 and corresponding amplification factor. The response of steel columns is significantly affected by the characteristic of blast loading. With the increases of explosion distance, local damage transformed to overall failure for the steel column.

关键词

工字形钢柱 / 爆炸类型 / 爆炸荷载 / 荷载分布 / 破坏特征

Key words

  / I-shaped steel column;explosion type;blast loading;the distribution of blast loading;failure characteristic

引用本文

导出引用
杨涛春,3, 陆勇2,李国强1,陈素文1. 工字形钢柱的爆炸作用分布特征与计算研究[J]. 振动与冲击, 2016, 35(5): 27-38
YANG Taochun1,3, LU Yong2, LI Guoqiang1, CHEN Suwen1. The distribution and calculation of blast loading for I-shaped steel column subjected to explosion[J]. Journal of Vibration and Shock, 2016, 35(5): 27-38

参考文献

 [1] Brode H L. Blast wave from a spherical charge[J]. The physics of fluids. 1959, 2(217-229).
 [2] Brode H L. Numerical Solutions of Spherical Blast Waves[J]. Journal of applied physics. 1955, 26(6): 766-775.
 [3] Henrych J. The dynamics of explosion and its use [M]. Elsevier Science Ltd,1979.
 [4] Almed Falmy Farag Tolba Response of FRP-retrofitted Reinforced Concrete Panels to Blast Loading[D]. Canada: Carleton University, 2001.
 [5] Kinney G F, Graham K J. Explosive shocks in air[M]. Berlin: Springer-Verlag, 1985.
 [6] Newmark N M, Hansen R J. Design of blast resistant structures[M]. New York: Shock and Vibration Hand book.Harris and Crede. McGraw-Hill, 1961.
 [7] Brossard J, Desrosier C, Purnomo H, et al. Pressure Loads on Plane Surface submitted to an Explosion[Z]. Marseille: 1993387-392.
 [8] Trélat S, Sochet I, Autrusson B, et al. Impact of a shock wave on a structure on explosion at altitude[J]. Journal of Loss Prevention in the Process Industries., 20(4-6): 509-516.
 [9] Dharaneepathy M V, Rao M, Santhakumar A R. CRITICAL DISTANCE FOR BLAST-RESISTANT DESIGN[J]. COMPUTERS & STRUCTURES. 1995, 54(4): 587-595.
[10] Symonds P S. Dynamic load characteristics in plastic bending of beams[J]. J. appl. Mech. 1953, 20(4): 475-481.
[11] Abrahamson G R, Lindberg H E. Peak load-impulse characterization of critical pulse loads in structural dynamics[J]. Nuclear engineering and design. 1976, 37(1): 35-46.
[12] Youngdahl C. Correlation parameters for eliminating pulse shape effects on dynamic plastic response of structures[J]. 1970(37): 744-752.
[13] Norman J. Bounds on the dynamic plastic behaviour of structures including transverse shear effects[J]. International Journal of Impact Engineering. 1985, 3(4): 273-291.
[14] Youngdahl C K. DYNAMIC PLASTIC DEFORMATION OF CIRCULAR CYLINDRICAL SHELLS.[J]. Journal of Applied Mechanics, Transactions ASME. 1972, 39 Ser E(3): 746-750.
[15] Cark K. Y. Dynamic plastic deformation of a tube loaded over a time-dependent region[J]. International Journal of Impact Engineering. 1990, 9(1): 71-88.
[16] Zhu G, Huang Y G, Yu T X, et al. Estimation of the plastic structural response under impact[J]. International Journal of Impact Engineering. 1986, 4(4): 271-282.
[17] Li Q M, Meng H. Pulse loading shape effects on pressure–impulse diagram of an elastic–plastic, single-degree-of-freedom structural model[J]. International Journal of Mechanical Sciences. 2002, 44(9): 1985-1998.
[18] Azevedo R L, Alves M. A numerical investigation on the visco-plastic response of structures to different pulse loading shapes[J]. ENGINEERING STRUCTURES. 2008, 30(1): 258-267.
[19] Borenstein E, Benaroya H. Sensitivity analysis of blast loading parameters and their trends as uncertainty increases[J]. Journal of Sound and Vibration. 2009, 321(3-5): 762-785.
[20] TM5-855-1.Fundamental of protective design for conventional wepons[M]. Departments of the army, 1986.
[21] TM5-1300.Structures to Resist the Effects of Accidental Explosion[M]. Department of the Army Technical Manual, Department of the Navy Publication NAVFAC P-397,Department of the Air Force Manual AFM 88-22, Department of the Army, the Navy, and the Air Force, 1969.
[22] 白金泽. LS-DYNA3D 理论基础与实例分析[M]. 科学出版社, 2005. (Bai Jinze. LS-DYNA3D theoretical basis and Case Study[M].Science press,2005. in chinese.)
[23] Wu C, Hao H. Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions
[J]. International Journal of Impact Engineering. 2005, 31(6): 699-717.

PDF(5866 KB)

Accesses

Citation

Detail

段落导航
相关文章

/