基于变尺度随机共振的冲击信号自适应提取与识别方法

曹衍龙,杨毕玉,杨将新,郑仕谱,周威杰

振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 65-69.

PDF(2111 KB)
PDF(2111 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 65-69.
论文

基于变尺度随机共振的冲击信号自适应提取与识别方法

  • 曹衍龙,杨毕玉,杨将新,郑仕谱,周威杰
作者信息 +

Impact Signal Adaptive Extraction and Recognition Based on scale transformation Stochastic Resonance System

  • CAO Yanlong  YANG Biyu  YANG Jiangxin  ZHENG Shipu  ZHOU Weijie
Author information +
文章历史 +

摘要

针对不同设备故障会产生不同冲击信号类型的问题,为了克服传统指标不能区分冲击信号类型的不足,本文分析了冲击信号峭度值和近似熵的特性,将两个指标相结合,构造冲击信号特征系数,在此基础上提出了一种基于变尺度随机共振的冲击信号自适应提取与识别方法,实现强噪声环境中弱冲击信号的提取与识别。最后,通过仿真验证该方法的有效性和可行性。

Abstract

Different equipment malfunction will produce different types of impact signal. But traditional index can’t distinguish the types of impact signal. In order to overcome the shortcomings, in this paper, kurtosis value and approximate entropy of impact signal are analyzed and impact signal characteristic coefficient is constructed combining of the two indexes. On the basis of this, a method of impact signal adaptive extraction and recognition based on scale transformation stochastic resonance system is presented. Then the extraction and recognition of weak signal in the strong noise environment is realized. Finally, the effectiveness and feasibility of the method are verified through simulation.
 

关键词

冲击信号 / 变尺度随机共振 / 信号提取 / 信号识别

Key words

impact signal / scale transformation stochastic resonance / signal extraction / signal recognition

引用本文

导出引用
曹衍龙,杨毕玉,杨将新,郑仕谱,周威杰. 基于变尺度随机共振的冲击信号自适应提取与识别方法[J]. 振动与冲击, 2016, 35(5): 65-69
CAO Yanlong YANG Biyu YANG Jiangxin ZHENG Shipu ZHOU Weijie. Impact Signal Adaptive Extraction and Recognition Based on scale transformation Stochastic Resonance System[J]. Journal of Vibration and Shock, 2016, 35(5): 65-69

参考文献

[1] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physics A: Matb-ematical and General, 1981, 14: 453-457.
[2] 杨定新,胡茑庆. 基于随机共振电路模拟的微弱周期信号检测. 电路与系统学报, 2004; 9(6): 135-138.
YANG Ding-xin, HU Niao–qing. Detecting weak signal based on analog simulating of stochastic resonance[J]. Journal of Circuits and Systems, 2004; 9(6): 135-138.
[3] 李强,王太勇,冷勇刚,等. 基于变步长随机共振的弱信号检测技术[J]. 天津大学学报, 2006; 39(4): 432-437.
LI-Qiang, WANG Tai-yong, LENG Yong-gang, et al. Weak signal detection based on step-changed stochastic resonance[J]. Journal of Tianjin University, 2006; 39(4): 432-437.
[4] 夏均忠,刘远宏,马宗坡,等. 基于调制随机共振的微弱信号检测研究[J]. 振动与冲击, 2012; 31(3): 132-135,140.
Xia Jun-zhong, LIU Yuan-hong, MA Zong-po, et al. Weak signal detection based on the modulated stochastic resonance[J]. Journal of Vibration and Shock, 2012; 31(3): 132-135,140.
[5] 高雯. 基于非线性动力学原理的弱信号检测理论及提取方法研究[D]. 北京:北京邮电大学, 2009.
GAO Wen. Weak signal detection theory and extraction arithmetic study based on non-linear system[D]. Beijing: Beijing University of Posts and Telecommunications, 2009.
[6] 王强. 基于随机共振的微弱冲击信号检测技术研究[D]. 北京:北京邮电大学, 2010.
WANG Qiang. Weak impact signal detection technology study based on stochastic resonance[D]. Beijing: Beijing University of Posts and Telecommunications, 2010.
[7] 范胜波,王太勇,冷勇刚,等.基于变尺度随机共振的弱周期性冲击信号的检测[J].中国机械工程, 2006; 17(4):387-390.
FAN Sheng-yong, WANG Tai-yong, Leng Yong-gang, et al. Detection of weak periodic impact signals based on scale transformation stochastic resonance[J]. China Mechanical Engineering, 2006; 17(4):387-390.
[8] 谭继勇,陈雪峰,何正嘉. 冲击信号的随机共振自适应检测方法[J]. 机械工程学报. 2010; 46(23): 61-67.
TAN Ji-yong, CHEN Xue-feng, HE Zheng-jia. Impact signal detection method with adeptive stochastic resonance[J]. Journal of Mechanical Engineering, 2010; 46(23): 61-67.
[9] 李继猛,陈雪峰,何正嘉. 采用粒子群算法的冲击信号自适应单稳态随机共振检测方法[J]. 机械工程学报,2011, 47(21): 58-63.
LI Ji-meng, CHEN Xue-feng, HE Zheng-jia. Adaltive monostable stochastic resonance based on PSO with application in impact signal detection[J]. Journal of Mechanical Engineering, 2006; 17(4):387-390.
[10] 石鹏,冷永刚,范胜波等. 双稳系统处理微弱冲击信号的研究[J]. 振动与冲击, 2010; 31(6): 150-154.
SHI Peng, LENG Yong-gang, FAN Sheng-bo, et al. A bistable system for detecting a weak pulse signal[J]. Journal of Vibration and Shock, 2010; 31(6): 150-154.
[11] DYBIEC B, Lévy noises: Double stochastic resonance in a single-well potential[J]. Physical Review E80, 2009(041111): 1-7.
[12]L.Huafeng, B.Rongtao, X.Bohou. Intrawell stochastic resonance of bistable system[J]. Journal of Sound and Vibration, 2004. P155-167.
[13] 胥永刚,李凌均,何正嘉. 近似熵及其在机械设备故障诊断中的应用[J]. 信息与控制, 2002; 31(6): 547-551.
XU Yong-gang, LI Ling-jun, HE Zheng-jia. Approximate entropy and its applications in mechanical fault diagnosis[J]. Information and Control, 2002; 31(6): 547-551.
[14] 王步宇,俞亚楠. 移动荷载作用下结构损伤的近似熵分析[J]. 振动与冲击, 2010; 29(6): 125-128.
WANG Bu-yu, YU Ya-mei. Approximate entropy analysis of structural damage under moving load[J]. Journal of Vibration and Shock, 2010; 29(6): 125-128.

PDF(2111 KB)

Accesses

Citation

Detail

段落导航
相关文章

/