具有形状记忆合金弹簧支承的转子系统的动力稳定性研究

任勇生,杜成刚,刘养航

振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 70-74.

PDF(1959 KB)
PDF(1959 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 70-74.
论文

具有形状记忆合金弹簧支承的转子系统的动力稳定性研究

  • 任勇生,杜成刚,刘养航
作者信息 +

Dynamic stability of rotating shaft-bearings with shape memory alloy support

  • Ren Yongsheng, Du Chenggang, Liu Yanghang
Author information +
文章历史 +

摘要

提出一个具有形状记忆合金(SMA)弹簧支承的旋转轴转子系统的自由振动分析模型。基于Euler-Bernoulli梁理论建立旋转轴的连续分布弹性振动方程, 并且考虑旋转轴材料内阻的影响。采用Brinson模型分析SMA螺旋弹簧的受限回复刚度特性。在振型假设的基础上利用虚功原理得到转子系统的特征方程。通过数值计算分析了SMA弹簧的激励温度和初始应变对转子系统的临界转速和失稳阈的影响规律。研究表明, 利用SMA弹簧的受限回复特性调节支承刚度可以提高转子系统的临界转速和失稳阈,从而增强转子系统的动力学稳定性。

Abstract

A rotating shaft-bearing rotordynamic model with shape memory alloy (SMA) support was proposed. The Euler-Bernoulli beam theory was used to derive the continuous elastic vibration equations of the rotating shaft. Internal viscous damping of the shaft was also included in the equations. Brinson constitutive model was adopted to describe the stiffness charateristic of SMA helical spring in the state of restrained strain. On the basis of assumed mode shapes the eigenvalue equation of the rotor system can be obtained by using the virtural work principle. The influcences of the actuation temperature and initial strain of SMA helical spring on the critical speed and instability threshold of the rotor system. Results show that support siffness modification based on the restrained recovery of SMA helical spring can significantly increase the critical speed and instability threshold.

关键词

形状记忆合金弹簧 / 弹性支承 / 转子 / 稳定性

Key words

shape memory alloy spring / elastic support / rotors / stability

引用本文

导出引用
任勇生,杜成刚,刘养航 . 具有形状记忆合金弹簧支承的转子系统的动力稳定性研究[J]. 振动与冲击, 2016, 35(5): 70-74
Ren Yongsheng, Du Chenggang, Liu Yanghang . Dynamic stability of rotating shaft-bearings with shape memory alloy support[J]. Journal of Vibration and Shock, 2016, 35(5): 70-74

参考文献

[1]孟光.转子动力学研究的回顾与展望[J].振动工程学报,2002,15(1):1-9.
Meng.Guang. Retrospect and prospect to the research on rotordynamics[J].Journal of Vibration Engineering,2002,15(1):1-9.
[2]任勇生, 王世文, 李俊宝, 沈亚鹏. 形状记忆合金在结构主被动控制中的应用[J]. 力学进展, 1999, 29(1): 19-33.
Ren Yongsheng, Wang Shiwen, Li Junbao,Shen Yapeng. Shape memory alloy and it’s application in active and passive vibration control[J].Advances in mechanics,1999,29(1):19-33.
[3]Baz A, Chen T. Performance of nitinol reinforced drive shafts[C]. In Smart Structure and Intelligent Systems, SPIE 1917, 1993, 791-08.
[4]Tylikowski A, Hetnarski R B. Semiactive control of a shape memory alloy hybrid composite rotating shaft[J].International Journal of Solids and Structures,2001,38:9347-9357.
[5]Gupta K. Critical speed analysis of fibre-reinforced composite rotor embedded with shape memory alloy wires[J]. Int. J. Rotat. Mach., 2000, 6 (3):201-213.
[6]Sawhney S and Jain S K. Vibration control of fibre-reinforced composite rotor using shape memory alloy (SMA) wires[D]. IT Delhi, 2001, New Delhi. BTech Dissertation.
[7]任勇生,赵仰生,安瑞君,代其义. 具有形状记忆合金丝的复合材料轴转子系统的振动与稳定性[J],振动与冲击,2015,34(3):136-143.
Ren Yongsheng,Zhao Yangsheng,An Ruijun, Dai Qiyi. Vibration and stability of SMA wires composite shaft -rotor systems[J]. Journal of Vibration and Shock, 2015, 34(3): 136-143.
[8]Yong-Yong He, Satoko Oi, Fu-Lei Chu and Han-Xiong Li. Vibration control of a rotor-bearing system using shape memory alloy: I.Theory[J]. Smart Mater. Struct., 2007,16:114-121.
[9]Santos B C, Savi M A. Nonlinear dynamics of a nonsmooth shape memory alloy oscillator[J].Chaos, Solitons and Fractals, 2009, 40 (1):197-209.
[10]Sitnikova E, Pavlovskaia E, Wiercigroch M, Savi M A. Vibration reduction of the impact system by an SMA restraint: numerical analysis[J].International Journal of Nonlinear Mechanics,2010,45 (9):837-849.
[11]Silva L C, Savi M A, Paiva A. Nonlinear dynamics of a rotordynamic nonsmooth shape memory alloy system[J]. Journal of Sound and Vibration,2013, 332:608-621.
[12]Brinson L C. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable [J]. Journal of Intelligent Material Systems and Structures, 1993, (4): 229-242.
[13]Montagnier O, Hochard C. Dynamic instability of supercritical driveshafts mounted on dissipative supports-Effects of viscous and hysteretic internal damping[J]. Journal of Sound and Vibration, 2007, 305:378-400.
[14]Shigley J E. Mechanical Engineering Design[M]. New York: McGraw-Hill, Inc, 1977.

PDF(1959 KB)

Accesses

Citation

Detail

段落导航
相关文章

/