基于频响函数辨识鼓筒-轮盘结合部连接参数的选点原则

王洪玉1,秦朝烨1,褚福磊1,刘彦琦2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 75-81.

PDF(1584 KB)
PDF(1584 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (5) : 75-81.
论文

基于频响函数辨识鼓筒-轮盘结合部连接参数的选点原则

  • 王洪玉1,秦朝烨1,褚福磊1,刘彦琦2
作者信息 +

A principle of selecting points for identifying joint parameters of a drum-disk structure based on frequency-response functions

  • WANG Hong-yu1 , QIN Zhao-ye1 , CHU Fu-lei1 , LIU Yan-qi2
Author information +
文章历史 +

摘要

基于频响函数的辨识方法被广泛用于识别结合部动态参数,其中如何选择频响数据是关键问题。本文针对结合部采用弹簧和阻尼器连接的鼓筒-轮盘模型提出了频响数据选取原则和对应于该原则的量化标准。具体选点原则为所选取的局部信噪比最高的频点所对应的模态对连接刚度的综合灵敏度应该最高。为了定量比较不同模态对连接刚度的综合灵敏度,建立了具体的量化指标和标准。理论分析表明本文所提出的频响数据选取原则和量化标准是有效的,具有一定的工程应用价值。

Abstract

Methods based on the frequency-response functions (FRFs) are widely used to identify the joint properties. A key problem in the FRFs-based methods is which FRFs data should be chosen for joint parameter identification. In this paper, a principle for FRFs data selection and a quantitative criterion corresponding to the principle are proposed based on a drum-disk model. The drum and the disk are combined with springs and dampers at the connected joint. The principle is that the comprehensive sensitivity of the mode which corresponds to the selected frequency point with the highest local signal-to-noise ratio (SNR) to the joint stiffness should be the highest. In order to compare the comprehensive sensitivity, a quantitative index is subsequently established. The study shows that the proposed principle and the quantitative criteria are effective and valuable in engineering application.

关键词

连接结合部 / 频响函数 / 参数识别 / 选点原则 / 量化指标

Key words

connected joints / frequency-response functions / parameter identification / principle of selecting points / quantitative index

引用本文

导出引用
王洪玉1,秦朝烨1,褚福磊1,刘彦琦2. 基于频响函数辨识鼓筒-轮盘结合部连接参数的选点原则[J]. 振动与冲击, 2016, 35(5): 75-81
WANG Hong-yu1,QIN Zhao-ye1,CHU Fu-lei1,LIU Yan-qi2. A principle of selecting points for identifying joint parameters of a drum-disk structure based on frequency-response functions[J]. Journal of Vibration and Shock, 2016, 35(5): 75-81

参考文献

[1] Ibrahim R A, Pettit C L. Uncertainties and dynamic problems of bolted joints and other fasteners [J]. Journal of Sound and Vibration, 2005, 279: 857-936.
[2] 蔡力钢, 郝宇, 郭铁能, 等. 螺栓结合面法向静态刚度特性提取方法研究[J]. 振动与冲击, 2014, 33(16): 18-23.
    CAI Li-gang, HAO Yu, GUO Tie-neng, et al. Method of extracting normal static stiffness of bolted joint interfaces [J]. Journal of Vibration and Shock, 2014, 33(16): 18-23.
[3] Mian Wang, Dong Wang, Gangtie Zheng. Joint dynamic properties identification with partially measured frequency response function [J]. Mechanical Systems and Signal Processing, 2012, 27: 499-512.
[4] Yuan J X, Wu S M. Identification of the joint structural parameters of machine tool by DDS and FEM [J]. Journal of Engineering for Industry, 1985, 107(1): 64-69.
[5] Kim T R, Wu X M, Eman K F. Identification of the joint parameters for a taper joint [J]. American Society of Mechanical Engineers, Journal of Engineering for Industry, 1989, 111: 282-287.
[6] Yang K T, Park Y S. Joint structural parameter identification using a subset of frequency response function measurements [J]. Mechanical Systems and Signal Processing, 1993, 7(6): 509-530.
[7] Hwang H Y. Identification techniques of structure connection parameters using frequency response function [J]. Journal of Sound and Vibration, 1998, 212: 469-479.
[8] Yang T, Fan S H, Lin C S. Joint stiffness identification using FRF measurements [J]. Computers and Structures, 2003, 81: 2549-2556.
[9] Wang J H, Chuang S C. Reducing error in the identification of structural joint parameters using error function [J]. Journal of Sound and Vibration, 2004, 273: 295-316.
[10] 郭铁能, 李玲, 蔡力钢, 等. 基于频响函数辨识机械结合部动态参数的研究[J]. 振动与冲击, 2011, 30(5): 69-72.
   GUO Tie-neng, Li Ling, CAI Li-gang, et al. Identifying mechanical joint dynamic parameters based on measured frequency response functions [J]. Journal of Vibration and Shock, 2011, 30(5): 69-72.
[11] 蔡力钢, 李玲, 郭铁能, 等. 基于不完备频响函数辨识结合部参数的研究[J]. 振动工程学报, 2011, 24(4), 345-350.
   CAI Li-gang, Li Ling, GUO Tie-neng, et al. Identifying mechanical joint dynamic parameters based on incomplete frequency response functions [J]. Journal of Vibration Engineering, 2011, 30(5): 69-72.
[12] 李玲, 蔡力钢, 郭铁能, 等. 机械结合部动态刚度辨识与实验研究[J]. 振动工程学报, 2012, 25(5), 488-496.
   Li Ling, CAI Li-gang, GUO Tie-neng, et al. Identification and experimental research on dynamic stiffness of mechanical joints [J]. Journal of Vibration Engineering, 2012, 25(5), 488-496.
[13] Sayed A. Nassar, Antoine Abboud. An improved stiffness model for bolted joints [J]. Journal of Mechanical Design, 2009, 131(121001): 1-11.
[14] Melih Eriten, Chu-Hee Lee, Andreas A, Polycarpou. Measurements of tangential stiffness and damping of mechanical joints: Direct versus indirect contact resonance methods [J]. Tribology International, 2012, 50: 35-44.
[15] 陈新. 机械结构动态设计理论方法及应用[M]. 北京:机械工业出版社,1997.
 

PDF(1584 KB)

602

Accesses

0

Citation

Detail

段落导航
相关文章

/