基于量纲分析的爆炸冲击波效应靶模型分析与实验研究

李丽萍,孔德仁,王 芳,商 飞,贾云飞

振动与冲击 ›› 2016, Vol. 35 ›› Issue (6) : 100-103.

PDF(1052 KB)
PDF(1052 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (6) : 100-103.
论文

基于量纲分析的爆炸冲击波效应靶模型分析与实验研究

  • 李丽萍,孔德仁,王  芳,商  飞,贾云飞
作者信息 +

Modeling research and experiment verification for reactant plate model subjected to explosion shock wave based on dimensional analysis

  • LI Li-ping,KONG De-ren,WANG Fang,SHANG Fei,JIA Yun-fei
Author information +
文章历史 +

摘要

针对传统的冲击波压力电测法易受爆炸场寄生效应干扰问题,提出基于效应靶塑性变形的爆炸冲击波压力评定方法。由于效应靶理论模型复杂、参数较多,利用量纲分析方法简化模型获得爆炸冲击波压力作用的效应靶最大挠度与炸药TNT当量、炸高及炸距之关系,并建立冲击波压力作用的效应靶最大挠度计算模型;设计100 kg、60 kg、20 kg 三种标准TNT爆炸的立靶、平靶实验,用回归分析法获得二者经验模型系数。结果表明,立靶与平靶两种结构效应靶最大挠度实验结果与经验模型计算结果误差分别优于3.59%及3.33%。该研究可指导战斗部冲击波压力评估,进而减少爆炸实验量。

Abstract

In order to solve the problem of interference in traditional electric measurement of shock wave pressure, a method to evaluate shock wave based on reactant plate plastic deformation is proposed. In case of the theory model is complex and multiple parameters, the dimensional analysis can simplify the progress. With it, the relations of the deformation of reactant plate with TNT equivalent, mounting height and distance of explosion and reactant plate are obtained. Afterwards, the deformation model of reactant plate under standard TNT explosive shock wave is established. Finally, three groups of experiments are designed to measuring the reactant plate deformation in explosion shock wave in three TNT equivalents of 100 Kg, 60 Kg and 20 Kg. And the regression analysis method is applied to calculate the coefficients. Through comparison of the deformation from experiment with the model, the error of vertical reactant plate and horizontal reactant plate is better than 3.59% and 3.33% respectively. Thus this analysis provides new ideals for evaluation of shock wave damage effectiveness assessment and can greatly reduce the amount of explosive experiment.
 

关键词

爆炸力学 / 效应靶 / 塑性大变形 / 量纲分析 / 冲击波压力评定

Key words

explosion mechanics / reactant plate / large plastic deformation / dimensional analysis / shock wave damage effectiveness assessment

引用本文

导出引用
李丽萍,孔德仁,王 芳,商 飞,贾云飞. 基于量纲分析的爆炸冲击波效应靶模型分析与实验研究[J]. 振动与冲击, 2016, 35(6): 100-103
LI Li-ping,KONG De-ren,WANG Fang,SHANG Fei,JIA Yun-fei. Modeling research and experiment verification for reactant plate model subjected to explosion shock wave based on dimensional analysis[J]. Journal of Vibration and Shock, 2016, 35(6): 100-103

参考文献

[1] 顾垒,向文飞.爆炸空气冲击波超压影响因素分析及控制[J]. 爆破, 2002, 19(2): 15-17.
GU Lei, XIANG Wen-fei. Analysis on influential factors about airblast overpressure and its control [J]. Blasting, 2002, 19(2): 15-17.
[2] 李燕杰,祖静,杜红棉. 冲击波测试中振动噪声的产生与去噪[J]. 传感器与微系统, 2010 (8): 71-73.
LI Yan-jie, ZU Jing, DU Hong-mian. Generation and denoising of the vibration noise during shock wave test[J]. Transducer and Microsystem Technologies,2010(8):71- 73.
[3] 吴祖堂,杨德猛,邹虹. 压电加速度传感器冲击测量中低频失真的理论分析与实验验证[J]. 传感技术学报, 2011, 23(11): 1586-1589.
WU Zu-tang, YANG De-meng,ZOU Hong. Theoretical analysis and validation of low frequency distortion of piezoelectricity accelerometer for shock measurement[J]. Chinese Journal of Sensors and Actuators, 2011, 23(11): 1586-1589.
[4] 王芳,冯顺山,俞为民. 爆炸冲击波作用下靶板的塑性大变形响应研究[J]. 中国安全科学学报, 2003, 13(3): 58-61.
WANG Fang, FENG Shun-shan,YU Wei-min. Study on large plastic deformation response of target plate under explosive blast wave[J]. China Safety Science Journal, 2003, 13(3): 58-61.
[5] Wright J, Hebert R, Maddala D, et al. Experimental study on the response of graded corrugated steel armor to shock loading [J]. Meccanica, 2015,50(2):479-492.
[6] Li J, Rong J L. Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion[J].European Journal of Mechanics B / Fluids, 2012, 32:59 -69.
[7] 张世臣, 米双山. LY-12 靶板在爆炸冲击波作用下损伤的有限元分析[J]. 兵工自动化, 2008, 27(5): 18-19.
ZHANG Shi-chen, MI Shuang-shan. Finite element analysis of LY-12 target damnifying by explosive shock wave[J]. Armament Automation, 2008, 27(5): 18-19.
[8] 吕勇, 石全, 王广彦,等.炸点位置对爆炸冲击波损伤天线
等效靶板的影响[J]. 战术导弹技术, 2012 (1):101-105.
Lü Yong, SHI Quan, WANG Guang-yuan, et al. Effects of exploding point on antenna equivalent target board damage from explosive shock wave[J]. Tactial Missile Technology, 2012(1):101-105.
[9] 赵凯,高光发,王肖钧. 柱壳结构抗冲击性能量纲分析与数值模拟研究[J]. 振动与冲击, 2014, 33(11): 12-16.
ZHAO Kai, GAO Guang-fa,WANG Xiao-jun. Dimensional analysis and numerical simulation for impact-resistance performance of cylindrical shell structures[J]. Journal of Vibration and Shock, 2014, 33(11): 12-16.
[10] 王朝成,任辉启,穆朝民,等.一端开口圆筒形爆室线状装药爆炸冲击波峰值压力计算分析[J].振动与冲击,2014,33(9): 122-125.
WANG Chao-cheng, REN Hui-qi,MU Chao-min,et al. Analysis and calculation for peak pressure of shock wave of linear charge explosive in a cylinder blasting chamber[J]. Journal of Vibration and Shock, 2014,33(9):122-125.
[11] Daehun S, Neidet E, Byeongnam J, et al. Dimensional analysis of thermal stratification in a suppression pool[J]. International Journal of Multiphase Flow, 2014, 66: 92-100.
[12] 宁鹏飞,唐德高. 自然通风隧道内爆炸冲击波传播特性研究[J]. 振动与冲击, 2014, 33(24):172-176.
NING Peng-fei, TANG De-gao. Blast shock wave propagation characteristics in a natural ventilation tunnel[J]. Journal of Vibration and Shock, 2014, 33(24):172-176.
[13] Langlet A,Souli M,Aquelet N, et al. Air blast reflecting on a rigid cylinder: simulation and reduced scale experiments[J]. Shock Waves, 2015,25(1):47-61.

PDF(1052 KB)

Accesses

Citation

Detail

段落导航
相关文章

/