基于等效转化关系的一维非均匀介质波动问题解析方法研究

杨在林,王 耀,黑宝平,李志东

振动与冲击 ›› 2016, Vol. 35 ›› Issue (6) : 152-155.

PDF(904 KB)
PDF(904 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (6) : 152-155.
论文

基于等效转化关系的一维非均匀介质波动问题解析方法研究

  • 杨在林,王  耀,黑宝平,李志东
作者信息 +

Analytical investigation of wave motion problem in one dimensional inhomogeneous medium based on equivalent transformation relationship

  • YANG Zai-lin,WANG Yao,HEI Bao-ping,LI Zhi-dong
Author information +
文章历史 +

摘要

基于波动方程与位移场解答等效思路,获得非均匀介质波动问题与均匀介质柱面波等效转化关系。分析发现两类问题模型间可相互转化,问题解答可相互等效。等效转化实质为几何形状与材料参数的等效关系。利用等效转化关系获得两个一维非均匀介质波动问题算例的解析解。

Abstract

Based on the idea of the equivalent wave motion equation and the equivalent displacement field solution, the equivalent transformation relationship is obtained between the wave in the 1D inhomogeneous medium and the cylindrical wave in the homogeneous medium. Each model can be transformed equivalently into another. The solutions of these two problems are equivalent each other. The nature of the equivalent transformation is the equivalent relationship between geometry and material parameters. Using this relationship, the analytic approaches can be given for two examples of the wave motion problems in the 1D inhomogeneous medium.
 

关键词

非均匀介质 / 波动 / 等效转化

Key words

inhomogeneous medium / wave motion / equivalent transformation

引用本文

导出引用
杨在林,王 耀,黑宝平,李志东. 基于等效转化关系的一维非均匀介质波动问题解析方法研究[J]. 振动与冲击, 2016, 35(6): 152-155
YANG Zai-lin,WANG Yao,HEI Bao-ping,LI Zhi-dong. Analytical investigation of wave motion problem in one dimensional inhomogeneous medium based on equivalent transformation relationship[J]. Journal of Vibration and Shock, 2016, 35(6): 152-155

参考文献

[1] Wang Li-li. Foundations of stress waves[M]. Elsevier Science Ltd, 2006.
[2] Mutlubas N D. Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude[J]. Nonlinear analysis-theory methods & applications, 2014, 97: 145-154.
[3] Weng C C. Waves and fields in Inhomogeneous media[M]. New York: Van Nostrand Reinhold, 1990.
[4] Nolen J, Ryzhik L. Traveling waves in a one-dimensional heterogeneous medium[J]. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2009,26(3): 1021-1047.
[5] Virieux J. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method[J]. Geophysics, 1984, 49(11): 1933-1957.
[6] Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method[J]. Geophysics, 1986, 51(4): 889-901.
[7] Wesolowski Z. Wave reflection on a continuous transition zone between two homogeneous materials[J].Acta Mechanica,1994, 105: 119-131.
[8] Manolis G D. Harmonic elastic waves in continuously heterogeneous random layers[J]. Engineering Analysis with Boundary Elements, 1997,19:181-198.
[9] Chaix J F, Garnier V, Corneloup G. Ultrasonic wave propagation in heterogeneous solid media: Theoretical analysis and experimental validation[J]. Ultrasonics, 2006,44: 200-210.
[10] JafarGandomi A, Takenaka H. FDTD3C - A FORTRAN program to model multi-component seismic waves for vertically heterogeneous attenuative media[J]. Computers & Geosciences, 2013,51: 314-323.
[11] Benito J J, Ureñab F, Gavete L,et al. A GFDM with PML for seismic wave equations in heterogeneous media[J]. Journal of Computational and Applied Mathematics, 2012, 252(2013): 40-51.
[12] Yang Zai-lin, Wang Yao, Hei Bao-ping. Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method [J]. Earthquake Engineering and Engineering Vibration, 2013, 12(4):569-576.
[13] 王耀,杨在林,黑宝平. 不同加载速率下一维非均匀介质位移响应研究[J]. 东北大学学报, 2013, 34(增刊2): 18-21.
WANG Yao, YANG Zai-lin, HEI Bao-ping. An investigation on the displacement response in one-dimension inhomogeneous media under different loading speeds [J]. Journal of Northeastern University, 2013, 34(Sup2): 18-21.
 [14] Hsing P Y. Elastic waves in solids[J]. Journal of Applied Mechanics, 1983,50(4):1152-1164.

PDF(904 KB)

Accesses

Citation

Detail

段落导航
相关文章

/