基于分段多项式的局部特征尺度分解方法及应用

吴占涛1,程军圣1,曾 鸣1,郑近德2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (6) : 35-40.

PDF(2220 KB)
PDF(2220 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (6) : 35-40.
论文

基于分段多项式的局部特征尺度分解方法及应用

  • 吴占涛1,程军圣1,曾  鸣1,郑近德2
作者信息 +

The method of piecewise polynomial based local characteristic-scale decomposition and its application

  • WU Zhan-tao1,CHENG Jun-sheng1,ZENG Ming1,ZHENG Jin-de2
Author information +
文章历史 +

摘要

针对局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)方法中两极值点连线在极值点处一阶微分不连续,引起分解精度降低问题,提出新非平稳信号分析方法-基于分段多项式的局部特征尺度分解(Piecewise Polynomial based Local Characteristic-scale Decomposition, PPLCD)。用分段多项式取代LCD中直线连接,且均值曲线插值点由相邻3个同类极值点构成的多项式计算产生。通过仿真信号将PPLCD与LCD对比,结果表明,PPLCD在提高分量正交性、精确性等具有一定优越性;由转子碰摩故障诊断表明该方法的有效性。

Abstract

 A novel nonstationary signal method PPLCD was proposed for improving the problem of LCD, of which,the first derivative of extremum points in the connecting line of two extreme value points was discontinuous, thereby the decomposition precision was lowered. Piecewise polynomial was used in PPLCD to replace line connection in LCD, and the mean curve interpolation points were computed by the polynomial which was generated by three adjacent similar extremum points. The paper firstly studied the theory of PPLCD,then simulation experiments were used to compare PPLCD with LCD. The results indicate that PPLCD is more efficient in improving the orthogonality and veracity in components than LCD. Finally, the proposed method was applied to diagnose the rotor with rub-impact fault successfully which indicated the effectiveness of PPLCD.

关键词

局部特征尺度分解 / 分段多项式 / 故障诊断 / 转子 / 内禀尺度分量

Key words

 local characteristic-scale decomposition;piecewise polynomial;fault diagnosis / rotor;intrinsic scale component

引用本文

导出引用
吴占涛1,程军圣1,曾 鸣1,郑近德2. 基于分段多项式的局部特征尺度分解方法及应用[J]. 振动与冲击, 2016, 35(6): 35-40
WU Zhan-tao1,CHENG Jun-sheng1,ZENG Ming1,ZHENG Jin-de2. The method of piecewise polynomial based local characteristic-scale decomposition and its application[J]. Journal of Vibration and Shock, 2016, 35(6): 35-40

参考文献

[1] 程军圣,郑近德,杨宇. 一种新的非平稳信号分析方法-局部特征尺度分解法[J]. 振动工程学报, 2012, 25(2): 215-220.
CHENG Jun-sheng,ZHENG Jin-de,YANG Yu. A nonstationary signal analysis approach-the local characteristic-scale decomposition method[J]. Journal of Vibration Engineering, 2012, 25(2): 215-220.
[2] 杨宇,曾鸣,程军圣. 局部特征尺度分解方法及其分量判据研究[J]. 中国机械工程, 2013, 24(2):195-201.
YANG Yu, ZENG Ming, CHENG Jun-sheng. Research on local characteristic-scale decomposition and its stopping criteria[J]. China Mechanical Engineering, 2013, 24(2):195- 201.
[3] Lei Y, Lin J, He Z, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing,2013,35(1):108- 126.
[4] 杨宇,曾鸣,程军圣. 局部特征尺度分解方法及其分解能力研究[J]. 振动工程学报, 2012, 25(5):602-609.
YANG Yu, ZENG Ming, CHENG Jun-sheng. Research on local characteristic-scale decomposition and its capacities[J]. Journal of Vibration Engineering, 2012, 25(5):602-609.
[5] Zheng Jin-de, Cheng Jun-sheng, Yang Yu. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy[J]. Mechanism and Machine Theory, 2013, 70: 441-453.
[6] 程军圣,杨怡,杨宇. 局部特征尺度分解方法及其在齿轮故障诊断中的应用[J]. 中国机械工程学报,2012, 48(9): 64-71.
CHENG Jun-sheng, YANG Yi, YANG Yu. Local characteristic-scale decomposition method and its application to gear fault diagnosis[J]. Journal of Mechanical Engineering, 2012, 48(9): 64-71.
[7] 郑超,郭奇,郭丽杰,等. 基于局部特征尺度分解的旋转机械故障欠定盲源分离方法研究[J]. 燕山大学学报,2014, 38(2): 168-174.
ZHENG Chao, GUO Qi, GUO Li-jie, et al. Underdetermined blind source separation method of rotating machinery faults based on local characteristic-scale decomposition[J]. Journal of Yanshan University, 2014, 38(2):168-174.
[8] Zheng Jin-de, Cheng Jun-sheng, Yang Yu. Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2013, 40(1): 136-153.
[9] Cheng J, Yu D, Yang Y. Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(3): 1197-1211.
[10] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms[J]. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP. 2003, 3: 8-11.
[11] 程军圣,郑近德,杨宇. 基于局部特征尺度分解的经验包络解调方法及其在机械故障诊断中的应用[J]. 机械工程学报, 2012, 48(19): 87-99.
CHENG Jun-sheng, ZHENG Jin-de, YANG Yu. Empirical envelope demodulation approach based on local characteristic-scale decomposition and its applications to mechanical fault diagnosis[J]. Journal of Mechanical Engineering, 2012, 48(19): 87-99.
[12] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[13] 马辉,太兴宇,牛和强,等. 转定子静态不对中条件下碰摩故障仿真[J]. 振动工程学报, 2013, 26(2):260-268.
MA Hui, TAI Xing-yu, NIU He-qiang, et al. Rub-impact fault simulation of a rotor system under static misalignment conditions[J]. Journal of Vibration Engineering, 2013, 26(2): 260-268.
[14] Yang Y, Cheng J S, Zhang K. An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems[J]. Measurement, 2012, 45(3): 561-570.
[15] 韩清凯,于涛,王德友,等. 故障转子系统的非线性振动分析与诊断方法[M]. 北京:科学出版社, 2010:37-65.
[16] 闻邦椿,武新华,丁千,等. 故障旋转机械非线性动力学的理论与试验[M]. 北京:科学出版社, 2004:112-135.
 

PDF(2220 KB)

Accesses

Citation

Detail

段落导航
相关文章

/