[1] 程军圣,郑近德,杨宇. 一种新的非平稳信号分析方法-局部特征尺度分解法[J]. 振动工程学报, 2012, 25(2): 215-220.
CHENG Jun-sheng,ZHENG Jin-de,YANG Yu. A nonstationary signal analysis approach-the local characteristic-scale decomposition method[J]. Journal of Vibration Engineering, 2012, 25(2): 215-220.
[2] 杨宇,曾鸣,程军圣. 局部特征尺度分解方法及其分量判据研究[J]. 中国机械工程, 2013, 24(2):195-201.
YANG Yu, ZENG Ming, CHENG Jun-sheng. Research on local characteristic-scale decomposition and its stopping criteria[J]. China Mechanical Engineering, 2013, 24(2):195- 201.
[3] Lei Y, Lin J, He Z, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing,2013,35(1):108- 126.
[4] 杨宇,曾鸣,程军圣. 局部特征尺度分解方法及其分解能力研究[J]. 振动工程学报, 2012, 25(5):602-609.
YANG Yu, ZENG Ming, CHENG Jun-sheng. Research on local characteristic-scale decomposition and its capacities[J]. Journal of Vibration Engineering, 2012, 25(5):602-609.
[5] Zheng Jin-de, Cheng Jun-sheng, Yang Yu. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy[J]. Mechanism and Machine Theory, 2013, 70: 441-453.
[6] 程军圣,杨怡,杨宇. 局部特征尺度分解方法及其在齿轮故障诊断中的应用[J]. 中国机械工程学报,2012, 48(9): 64-71.
CHENG Jun-sheng, YANG Yi, YANG Yu. Local characteristic-scale decomposition method and its application to gear fault diagnosis[J]. Journal of Mechanical Engineering, 2012, 48(9): 64-71.
[7] 郑超,郭奇,郭丽杰,等. 基于局部特征尺度分解的旋转机械故障欠定盲源分离方法研究[J]. 燕山大学学报,2014, 38(2): 168-174.
ZHENG Chao, GUO Qi, GUO Li-jie, et al. Underdetermined blind source separation method of rotating machinery faults based on local characteristic-scale decomposition[J]. Journal of Yanshan University, 2014, 38(2):168-174.
[8] Zheng Jin-de, Cheng Jun-sheng, Yang Yu. Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2013, 40(1): 136-153.
[9] Cheng J, Yu D, Yang Y. Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(3): 1197-1211.
[10] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms[J]. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP. 2003, 3: 8-11.
[11] 程军圣,郑近德,杨宇. 基于局部特征尺度分解的经验包络解调方法及其在机械故障诊断中的应用[J]. 机械工程学报, 2012, 48(19): 87-99.
CHENG Jun-sheng, ZHENG Jin-de, YANG Yu. Empirical envelope demodulation approach based on local characteristic-scale decomposition and its applications to mechanical fault diagnosis[J]. Journal of Mechanical Engineering, 2012, 48(19): 87-99.
[12] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[13] 马辉,太兴宇,牛和强,等. 转定子静态不对中条件下碰摩故障仿真[J]. 振动工程学报, 2013, 26(2):260-268.
MA Hui, TAI Xing-yu, NIU He-qiang, et al. Rub-impact fault simulation of a rotor system under static misalignment conditions[J]. Journal of Vibration Engineering, 2013, 26(2): 260-268.
[14] Yang Y, Cheng J S, Zhang K. An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems[J]. Measurement, 2012, 45(3): 561-570.
[15] 韩清凯,于涛,王德友,等. 故障转子系统的非线性振动分析与诊断方法[M]. 北京:科学出版社, 2010:37-65.
[16] 闻邦椿,武新华,丁千,等. 故障旋转机械非线性动力学的理论与试验[M]. 北京:科学出版社, 2004:112-135.