提出测量静压下高分子材料黏弹性动力学参数方法。分别制作均匀实心覆盖层及圆柱空腔覆盖层样品,测量实心覆盖层复反射系数计算复纵波波数,测量圆柱空腔覆盖层复反射系数,结合圆柱空腔结构变形,利用圆柱管中轴对称波特征方程计算复剪切波波数,综合复纵波波数与复剪切波波数计算静压下复杨氏模量及复泊松比。对橡胶材料进行声管测试,分析、总结静压对黏弹性动力学参数影响规律。测量某吸声覆盖层静压下反射系数,并与用实测材料参数计算的反射系数进行比较,验证方法的可靠性。
Abstract
The measurement method of viscoelastic dynamic parameters of polymer materials under hydrostatic pressure has been developed. Two different samples of sound absorption coatings, where one is solid and the other contains cylindrical-hole, will be utilized in the measurement. When the reflection coefficient of solid sample is tested, the complex longitudinal wavenumber can be calculated. Besides, the axisymmetric wavenumber can be obtained by measuring the reflection coefficient of cylindrical-hole sample, together with the deformation of cylindrical hole, the complex transverse wavenumber can be computed by solving the characteristic equation of axisymmetric wavenumber, and the complex elastic modulus and the complex Poisson’s ratio can be calculated easily. Then, a rubber sample has been tested in the water-filled acoustic-pipe, and the effect of hydrostatic pressure on the viscoelastic dynamic parameters has been analyzed and summarized. Finally, the reflection coefficient of another sound absorption coating under hydrostatic pressure has been tested, compared with the simulated reflection coefficient which is from the measured viscoelastic dynamic parameters, demonstrates that the present method is correct.
关键词
静水压力 /
高分子材料 /
吸声覆盖层 /
黏弹性动力学参数
{{custom_keyword}} /
Key words
hydrostatic pressure /
polymer material /
sound absorption coating /
viscoelastic dynamic parameters
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陶猛,卓琳凯. 静水压力下吸声覆盖层的声学性能分析[J]. 上海交通大学学报, 2011, 45 (9): 1340-1344.
TAO Meng, ZHUO Lin-kai. Effect of hydrostatic pressure on acoustic performance of sound absorption coating[J]. Journal of Shanghai Jiaotong University, 2011, 45 (9): 1340 -1344.
[2] Liao Y, Wells V. Estimation of complex Young’s modulus of non-stiff materials using a modified oberst beam technique[J]. Journal of Sound and Vibration, 2008, 316 (1/2/3/4/5): 87-100.
[3] Park J, Lee J. Measurement of viscoelastic properties from the vibration of a compliantly supported beam[J]. Journal of the Acoustical Society of America, 2011, 130 (6): 3729-3735.
[4] Yuan H, Guzina B, Chen S, et al. Estimation of the complex shear modulus in tissue-mimicking materials from optical vibrometry measurements[J]. Inverse Problems in Science and Engineering, 2012, 20 (2):173-187.
[5] 尹铫,刘碧龙,白国锋,等. 激光测振有限元反演优化方法测量黏弹材料动力学参数[J]. 声学学报, 2013, 38 (2): 172-180.
YIN Yao, LIU Bi-long, BAI Guo-feng, et al. A study on polymer modulus test using laser-based finite element method[J]. Journal of Acoustics, 2013, 38 (2):172-180.
[6] Liu H W, Yao L, Zhao H, et al. A mixed method for measuring low-frequency acoustic properties of macromolecular materials[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2006, 49 (6): 729-739.
[7] Piquette J C. Shear property determination from underwater acoustic panel tests[J]. Journal of the Acoustical Society of America, 2004, 115 (5): 2110-2121.
[8] Guillot F M, Trivett D H. A dynamic Young’s modulus measurement system for highly compliant polymers[J]. Journal of the Acoustical Society of America, 2003, 114 (3): 1334 -1345.
[9] Guillot F M, Trivett D H. Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young's moduli as a function of temperature and hydrostatic[J]. Journal of Sound and Vibration, 2011, 330 (14): 3334 - 3351.
[10] 黄修长,朱蓓丽,胡碰,等. 静水压力下橡胶动力学参数的声管测量方法[J]. 上海交通大学学报, 2013, 47 (10): 1503-1508.
HUANG Xiu-chang, ZHU Bei-li, HU Peng, et al. Measurement of dynamic properties of rubber under hydrostatic pressure by water-filled acoustic tube[J]. Journal of Shanghai Jiaotong University, 2013, 47 (10): 1503-1508.
[11] Tao Meng. Simplified model for predicting acoustic performance of an underwater sound absorption coating[J]. Journal of Vibration and Control, 2014, 20 (3): 339-354.
[12] 汤渭霖,何世平,范军. 含圆柱形空腔吸声覆盖层的二维理论[J]. 声学学报, 2005, 30 (4): 289-295.
TANG Wei-lin, HE Shi-ping, FAN Jun. Two-dimensional model for acoustic absorption of viscoelastic coating containing cylindrical holes[J]. Journal of Acoustics, 2005, 30 (4): 289-295.
[13] 朱蓓丽,肖今新. 双水听器传递函数法低频测试及误差分析[J]. 声学学报, 1994, 19 (5): 351-360.
ZHU Bei-li, XIAO Jin-xin. A two-hydrophone transfer function method for measuring low-frequency acoustic properties and its error analysis[J]. Journal of Acoustics, 1994, 19 (5): 351-360.
[14] Skelton E A, James J H. Theoretical acoustics of underwater structures[M]. London: Imperial College Press, 1997.
[15] Pritz T. The Poisson’s loss factor of solid viscoelastic materials[J]. Journal of Sound and Vibration, 2007, 306 (3): 790-802.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}