用小波分析方法对5种浆体黏度、5种固相比与4种颗粒粒径组合的85组泥石流冲击室内模型实验所得冲击信号进行消噪、时频处理,通过对降噪的泥石流冲击信号进行冲击能量计算并分析实验中泥石流冲击能量与频谱间关系。结果表明,随浆体黏度、固相比及颗粒粒径增大,泥石流冲击信号能量呈增长趋势,且相同浆体黏度下固体颗粒粒径大于1.3~1.5 cm时,泥石流冲击能量增幅明显。将冲击信号分解为9个频段(0~1.958 Hz、1.958~3.906 Hz、3.906~7.812 Hz、7.812~15.625 Hz、15.625~31.25 Hz、31.25~62.5 Hz、62.5~125 Hz、125~250 Hz、250~500 Hz),泥石流冲击信号96%以上能量聚集在频率0~1.958 Hz的低频段a8内。该结果对推动泥石流动力特性研究具有积极意义。
Abstract
A physical experimental model in laboratory was established for debris flow, and 85 groups’ conditions were done considering the compounding of five slurry viscosities, five solid phase ratios and four grain diameters. The impacting force of debris flow under the experimental conditions were denoised and time-frequency disposed by wavelet method, then the impacting signals were broken down to nine frequency range (0~1.958 Hz, 1.958~3.906 Hz, 3.906~7.812 Hz, 7.812~15.625 Hz, 15.625~31.25 Hz, 31.25~62.5 Hz, 62.5~125 Hz, 125~250 Hz, 250~500 Hz) and the energy distribution characteristics of each frequency range were calculated. The results show that, firstly, general impacting energy increases with the increase of slurry viscosity, solid phase ratio and grain diameter. Secondly, energy distributing law of debris flow in approximate parameter (a8) frequency range is the same with general energy distribution, and more than 96 percentages of the energy colleted at 0~1.958Hz frequency range. The result is positive in the studies on dynamical features of debris flow.
关键词
泥石流冲击 /
能量分布规律 /
模型实验 /
浆体黏度 /
固相颗粒
{{custom_keyword}} /
Key words
impacting force of debris flow /
distribution characteristics of energy /
model test /
slurry viscosity /
solid phase grain
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈洪凯,唐红梅,陈野鹰.公路泥石流力学[M].北京:科学出版社,2007.
[2] Iverson R M, Reid M E, LaHusen R G. Debris-flow mobilization from landslides[J].Earth Planet.1997,25:85- 138.
[3] 陈洪凯,唐红梅,吴四飞. 泥石流运动能量规律初步研究[J].中国地质灾害与防治学报,2006,15(增刊1):50-55.
CHEN Hong-kai,TANG Hong-mei,WU Si-fei. Primary research on debris flow’s locomotor energy[J]. The Chinese Journal of Geological Hazard and Control, 2006,15(Sup1): 50-55.
[4] 王兆印.泥石流龙头运动的实验研究及能量理论[J]. 水利学报,2001(3):18-26.
WANG Zhao-yin. Experimental study oil debris flow head and the energy theory[J].Journal of Hydraulic Engineering, 2001(3):18-26.
[5] 舒安平,张志东,王乐,等.基于能量耗损原理的泥石流分界粒径确定方法[J].水利学报,2008,38(3): 257-263.
SHU An-ping,ZHANG Zhi-dong,WANG Le,et al. Method for determining the critical grain size of viscous debris flow based on energy dissipation principle[J]. Journal of Hydraulic Engineering, 2008,38(3): 257-263.
[6] 曾超.泥石流作用下建筑物易损性评价方法[D]. 北京:中国科学院研究生院,2014.
[7] 冯泽深,高甲荣.基于能量概念的泥石流减灾新思路[J].中国地质灾害与防治学报,2009,20(1): 27-31.
FENG Ze-shen,GAO Jia-rong. A new viewpoint of debris flow disaster mitigation based on energy conception[J]. The Chinese Journal of Geological Hazard and Control, 2009,20(1): 27-31.
[8] 王兆印,漆力健,王旭昭,等. 消能结构防治泥石流研究-以文家沟为例[J].水利学报,2012, 43(3):253-263.
WANG Zhao-yin, QI Li-jian, WANG Xu-zhao,et al. Debris flow control with energy dissipation structures-experiences from Wenjiagou[J]. Journal of Hydraulic Engineering, 2012, 43(3):253-263.
[9] 李万,张志华,陈沧海,等.水下爆炸毁伤水下目标的能量分布特征[J].高压物理学报,2012,26(5): 537-544.
LI Wan,ZHANG Zhi-hua,CHEN Cang-hai,et al. Features of Energy distribution of underwater target by underwater explosion[J]. Chinese Journal of High Pressure Physics, 2012,26(5): 537-544.
[10] Zhong Guo-sheng,Ao Li-ping,Zhao Kui. Influence of explosion parameters on wavelet packet frequency band energy distribution of blast vibration[J]. Mining Science and Technology(China),2011,21: 35-40.
[11] 陈洪凯,鲜学福,唐红梅,等.水石流冲击信号能量分布实验研究[J].振动与冲击,2012,31(14): 56-59.
CHEN Hong-kai,XIAN Xue-fu, TANG Hong-mei,et al. Energy distribution in spectrum of shock signal for non- viscous debris flow[J]. Journal of Vibration and Shock, 2012,31(14): 56-59.
[12] 何晓英,唐红梅,朱绣竹,等.泥石流浆体冲击特性实验研究[J].振动与冲击,2013,32(24):127-134.
HE Xiao-ying,TANG Hong-mei,ZHU Xiu-zhu,et al. Tests for impacting characteristics of debris flow slurry[J]. Journal of Vibration and Shock, 2013,32(24):127-134.
[13] Mallat S, Hwang W L. Singularity detection and processing with wavelet[J]. IEEE Trans on Information Theory,1992,38 (2):617-643.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}