基于流固耦合问题的弱耦合法,研究弹性管束不同流速的壳程或/和管程流体诱导下的振动响应。研究表明,流体诱导振动幅值随壳程或/和管程流速的增加而增加。与相同管程流速条件相比,壳程流体引起的振幅较大。随壳程流速增加监测点振动频率增加;随管程流速增加监测点振动频率基本不变。壳、管程流体耦合诱导的振动位移曲线与仅壳程流体诱导的振动位移曲线类似,说明弹性管束工作过程中的振动主要由壳程流体诱导。流体诱导的振动频率接近管束第一阶固有频率时,监测点在y、z方向振幅逐渐趋于峰值。流体诱导弹性管束的振动主要表现为面内振动。
Abstract
Based on the weak coupling method of fluid-structure interaction, the vibration characteristics of the elastic tube bundle subjected to shell-side or/and tube-side cross flow are studied under different water inlet velocities. Numerical results show that the flow-induced vibration amplitude increases with increasing shell-side or/and tube-side water inlet velocity. However, the amplitude of shell-side flow-induced vibration is greater than that of tube-side flow-induced vibration with the same water inlet velocity. The flow-induced vibration frequency of the monitoring point increases with increasing shell-side water inlet velocity, and substantially unchanged when the tube-side water inlet velocity increases. Furthermore, the vibration curves of shell-side and tube-side flow-induced vibration are similar to the curves of shell-side flow-induced vibration. It is indicated that the vibration is mainly induced by the shell-side water. On the other hand, the vibration amplitudes of the monitoring points in y and z directions are gradually approaching the peak when the flow-induced vibration frequency is close to the first natural frequency of the elastic tube bundle. Additionally, the elastic tube bundle subjected to shell-side cross flow is mainly for in-plane vibration.
关键词
换热器 /
弹性管束 /
振动响应 /
流固耦合
{{custom_keyword}} /
Key words
heat exchanger /
elastic tube bundle /
vibration response /
fluid-structure interaction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 闫柯,葛培琪,张磊,等. 平面弹性管束管内流固耦合振动特性有限元分析[J]. 机械工程学报,2010,46(18):145- 149.
YAN Ke,GE Pei-qi,ZHANG Lei,et al. Finite element analysis of vibration characteristics of planar elastic tube bundle conveying fluid[J]. Journal of Mechanical Engineering, 2010, 46(18): 145-149.
[2] Jiang Bo, Tian Mao-cheng, Cheng Lin. Research on vibration and heat transfer characteristics of an optimized structure of elastic tube bundle [J]. Advanced Materials Research, 2013, 816/817: 260-265.
[3] YAN Ke, GE Pei-qi, HU Rui-rong, et al. Heat transfer and resistance characteristics of conical spiral tube bundle based on field synergy principle[J]. Chinese Journal of Mechanical Engineering, 2012, 25(2): 370-376.
[4] 闫柯,葛培琪,宿艳彩. 基于复模态的空间锥螺旋管管内流固耦合振动特性的有限元分析[J]. 振动与冲击,2011, 30(1): 204-207.
YAN Ke, GE Pei-qi, SU Yan-cai. FEM analysis for fluid-structure interaction in a dimensional helical tube base on complex mode theory [J]. Journal of Vibration and Shock, 2011, 30(1): 204-207.
[5] Yan Ke, Ge Pei-qi, Hong Jun. Experimental study of shell side flow-induced vibration of conical spiral tube bundle [J]. Journal of Hydrodynamics, 2013, 25(5): 695-701.
[6] 程林. 弹性管束换热器原理与应用[M]. 北京:科学出版社,2001: 34-62.
[7] Cheng Lin, Luan Ting, Du Wen-jing, et al. Heat transfer enhancement by flow-induced vibration in heat exchangers [J]. International Journal of Heat and Mass Transfer, 2009, 52(3): 1053-1057.
[8] 姜波,郝卫东,刘福国,等. 流体脉动对新型弹性管束传热特性影响的实验研究[J]. 振动与冲击,2012,31(10):59-63.
JIANG Bo, HAO Wei-dong, LIU Fu-guo, et al. Experiments on effects of fluid pulsation on heat transfer characteristics of the new type elastic tube bundle[J]. Journal of Vibration and Shock, 2012, 31(10): 59-63.
[9] 宿艳彩. 弹性管束流体诱导振动及换热特性研究[D]. 济南:山东大学,2012.
[10] 闫柯. 换热器内锥螺旋弹性管束振动与传热特性研究[D]. 济南:山东大学,2012.
[11] 孟海涛. 弹性管束换热器脉动流发生装置研究[D]. 济南: 山东大学, 2012.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}