研究整体平动自由结构载荷识别的Green函数法及应用途径。建立测点绝对运动加速度与动态激励力卷积关系,采用截断奇异值分解的正则化方法求解反卷积问题。以受轴向激励自由梁为对象,考虑不变及变截面模量两种情形,讨论整体平动及变形运动在核函数中的构成比例与核函数矩阵病态特性关系,分析结构整体刚度及测点部位局部刚度对载荷反演精度影响机制及测点布置需考虑的刚度因素,提高正则化方法计算稳健性;分析复杂的组合薄壁结构,以一点响应反求其在牵制释放实验中所受冲击载荷进行结构瞬态响应有限元仿真,比较多点仿真与实测结果,验证反求方法的有效性。
Abstract
Green kernel function method to identify dynamic loads on structures of overall translation was studied. The convolution integral relationship between absolute acceleration at measuring points and dynamic loads was constructed, and the regularization algorithm of truncated singular value decomposition was applied to solve corresponding de-convolution equations. First, the free beams with constant and variable stiffness distribution were analyzed. The effect of overall stiffness and local stiffness in the area of measuring point on the minimum singular values was examined. It is concluded that the large stiffness near measuring points can improve the computing robustness and noise resistance of regularization method. Finally, the method proposed in the paper was used to identify the shock load on the composted thin-walled structure in hold down and release experiment, the comparison of the response of numerical simulation based on load identification and measured result was made, and the validity and accuracy of identification technique was verified.
关键词
自由结构 /
载荷识别 /
绝对运动 /
格林函数 /
正则化
{{custom_keyword}} /
Key words
free structure /
load identification /
absolute motion /
Green function /
regularization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Sanchez J, Benaroya H. Review of force reconstruction techniques[J]. Journal of Sound and Vibration,2014,333(14): 2999-3018.
[2] 张运良,林皋,王永学,等. 一种改进的动态载荷时域识别方法[J]. 计算力学学报,2004,21(2):209-215.
ZHANG Yun-liang, LIN Gao, WANG Yong-xue, et al. An improved method of dynamic load identification in time domain[J]. Chinese Journal of Computational Mechanics, 2004, 21(2):209-215.
[3] 蔡元奇,朱以文. 基于逆向滤波器的动态载荷识别方法[J]. 振动工程学报,2006,19(2):200 -205.
CAI Yuan-qi, ZHU Yi-wen. Time domain identification method for dynamic loads based on inverse direction filter [J].Journal of Vibration Engineering, 2006, 19(2):200-205.
[4] 张方,朱德懋,张福祥. 动载荷识别的时间有限元模型理论及其应用[J]. 振动与冲击, 1998,17(12):1-5.
ZHANG Fan, ZHU De-mao, ZHANG Fu-xiang. The theory and application of time element model for dynamic load identification[J].Journal of Vibration and Shock,1998,17(2): 1-5.
[5] Inoue H, Harrigan J J, Reid S R. Review of inverse analysis for indirect measurement of impact force[J]. Applied Mechanics Review, 2001, 54(6):503-525.
[6] Liu G R,Ma W B,Han X. An inverse procedure for identification of loads on composite laminates[J]. Composites Part B:Engineering, 2002, 33:425-432.
[7] 韩旭,刘杰,李伟杰,等. 时域内多源动态载荷的一种计算反求技术[J]. 力学学报, 2009, 41(4): 595-602.
HAN Xu, LIU Jie, LI Wei-jie,et al. A computational inverse technique for reconstruction of multisource loads in time domain[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4):595-602.
[8] 王晓军,杨海峰,邱志平,等.基于Green 函数的动态载荷区间识别方法研究[J]. 固体力学学报,2011,32(1):95-101. WANG Xiao-jun, YANG Hai-feng,QIU Zhi-ping,et al. Research on interval identification method for dynamic loads based on Green’s function[J]. Chinese Journal of Solid Mechanics, 2011, 32(1): 95-101.
[9] Kreitinger T, Luo H L. Force identification from structural response[A]. In: Proceedings of the 1987 Sem Spring Conference on Experimental Mechanics[C].Houston, 1987: 851-855.
[10] 朱斯岩,朱礼文. 运载火箭动态载荷识别研究[J]. 振动工程学报, 2008, 21(2):135-139.
ZHU Si-yan, ZHU Li-wen. Dynamic load identification on lunch vehicle[J]. Journal of Vibration Engineering, 2008, 21(2):135-139.
[11]毛玉明,郭杏林,赵岩,等.自由-自由运行体系动态载荷反演问题研究[J]. 计算力学学报,2010,27(1): 35-39.
MAO Yu-ming, GUO Xing-lin, ZHAO Yan,et al. Study of dynamic force identification for free-free structural system [J]. Chinese Journal of Computational Mechanics, 2010, 27(1):35-39.
[12] Hansen P C. Truncated SVD solutions to discrete ill-posed problems with ill-determined numerical rank.[J]. SIAM Journal on Scientific and Statistical Computing, 1990, 11(3):503-518.
[13] Golub G H, Heath M, Wahba G. Generalized cross- validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979,21(2):215-223.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}