基于流固耦合与多目标拓扑优化的低噪声塑料机油冷却器盖优化设计

张俊红1,2,郭迁1,王健1,陈孔武1,马梁1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (7) : 186-191.

PDF(2042 KB)
PDF(2042 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (7) : 186-191.
论文

基于流固耦合与多目标拓扑优化的低噪声塑料机油冷却器盖优化设计

  • 张俊红1,2,郭迁1,王健1,陈孔武1,马梁1,2
作者信息 +

Low noise optimization design of plastic oil cooler cover based on the liquid-solid coupling method and multi-objective topological optimization

  • Zhang Jun-hong1,2, Guo Qian1, Wang Jian1, Chen Kong-wu1, Ma Liang1,2
Author information +
文章历史 +

摘要

机油冷却器盖属于薄壁件,距离振动激励源较近,容易产生较大的振动噪声,且内腔冷却液的存在对机油冷却器盖的振动噪声有着很大的影响。为有效的对塑料机油冷却器盖的振动噪声进行仿真研究及优化,将流体冲击压力作为预应力的同时,结合塑料机油冷却器盖与内腔流体的流固耦合模型,采用流固耦合的方法对塑料机油冷却器盖的振动噪声水平进行了预测评估;根据预测结果,识别出对噪声贡献度较大的耦合模态频率;以降低塑料机油冷却器盖整体噪声为总目标,以提高各贡献度较大的耦合模态频率为子目标,利用加权指数法建立了多目标优化函数,对塑料机油冷却器盖结构进行了多目标拓扑优化。结果表明,优化后降噪效果明显,总声功率级降低了1.79 dB。

Abstract

It has been proved that oil cooler cover is a main source of surface radiated noise for engine. And the existence of cooling liquid has a great influence on the vibration of oil cooler cover. Taking the fluid pressure as pre-stress and using the liquid-solid coupling method, a liquid-solid coupled model is established and used to predict the vibration and radiated noise of plastic oil cooler cover firstly. According to the prediction results, the main coupling modal frequencies that have great contribution to the radiated noise of the plastic oil cooler cover are identified. Then the multi-objective optimization is applied to structure topography optimization using the exponential weighted method. Compared with the initial plastic oil cooler cover, it has a higher performance: the overall noise is reduced 1.79 dB.
 

关键词

塑料机油冷却器盖 / 流固耦合 / 多目标拓扑优化 / 加权指数法

Key words

plastic oil cooler cover / liquid-solid coupling / multi-objective topography optimization / exponential weighted method

引用本文

导出引用
张俊红1,2,郭迁1,王健1,陈孔武1,马梁1,2. 基于流固耦合与多目标拓扑优化的低噪声塑料机油冷却器盖优化设计[J]. 振动与冲击, 2016, 35(7): 186-191
Zhang Jun-hong1,2, Guo Qian1, Wang Jian1, Chen Kong-wu1, Ma Liang1,2. Low noise optimization design of plastic oil cooler cover based on the liquid-solid coupling method and multi-objective topological optimization[J]. Journal of Vibration and Shock, 2016, 35(7): 186-191

参考文献

[1] Klaus G. Vehicle Interior Noise-combination of Sound, Vibration and Interactivity[J]. Sound and Vibration, 2009, 43(12): 8-13.
[2] 弯艳玲, 李守魁, 李元宝. 某型轿车加速行驶车外噪声控制方法[J]. 振动、测试与诊断, 2012, 32(5): 850-853.
WAN Yan-ling, LI Shou-kui, LI Yuan-bao. Control method of reducing pass-by noise emitted by accelerating certain of motor vehicles[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(5): 850-853.
[3] 贾继德, 王元龙, 李金学. 客车车外噪声源识别及整车降噪研究[J]. 振动与冲击, 2008, 27(3): 161-164.
JIA Ji-de, WANG Yuan-long, LI Jin-xue. Noise source identification and noise control of the bus[J]. Journal of Vibration and Shock, 2008, 27(3): 161-164.
[4] 朱孟华. 内燃机振动与噪声控制[M]. 北京: 国防工业出版社, 1995.
[5] 钱人一. 车用发动机噪声控制[M]. 上海: 同济大学出版社, 1997.
[6] 贺岩松, 黄  勇, 徐中明, 等. 发动机边盖透射与辐射噪声识别研究[J]. 振动与冲击, 2013, 32(22): 174-177.
HE Yan-song, HUANG Yong, XU Zhong-ming, et al. Identification of transmission and radiation noise of an engine side cover[J]. Journal of Vibration and Shock, 2013, 32(22): 174-177.
[7] 李京鲁. 机油冷却器盖振动响应分析[Z]. 中国内燃机学会2005年内燃机联合学术年会, 银川, 2005.
[8] Haran P, Mike E A, David A N. Design of 5.4L 3V Thermoplastic Composite Engine Cover for NVH Improvement[C]. SAE International, 2009-01-0602.
[9] Abdelkrim Z, Thomsa S, Frank V, et al. NVH Development of Lightweight Polymer Engines Oil Pans for Gasoline[C]. SAE International, 2009-01-2060.
[10] Cristiana D, Fabio P, Carlo R. A Proposal of an Oil Pan Optimization Methodology[C]. SAE International, 2010-01-0417.
[11] 刘胜吉, 严清梅, 束铭宇, 等. 柴油机气门室罩的声辐射分析[J]. 内燃机学报, 2007, 25(2): 177-181.
LIU Sheng-ji, YAN Qing-mei, SHU Ming-yu, et al. Sound Radiation of Valve Covers in Diesel Engine. Transactions of CSICE, 2007, 25(2): 177-181.
[12] 舒歌群, 刘俊栋, 李  民, 等. 基于HyperWorks的柴油机油底壳有限元建模和结构优化[J]. 小型内燃机与摩托车, 2008, 37(1):25-27.
SHU Ge-qun, LIU Jun-dong, LI Min, et al. Building FEM Model and Structural Optimization for Oil Pan on HyperWorks[J]. Small Internal Combustion Engine and Motorcycle, 2008, 37(1): 25-27.
[13] 贾维新, 郝志勇, 杨金才. 基于形貌优化的低噪声油底壳设计研究[J]. 浙江大学学报(工学版), 2007, 41(5), 770-773.
JIA Wei-xin, HAO Zhi-yong, YANG Jin-cai. Low noise design of oil panbased on topography optimization[J]. Journal of Zhejiang University( Engineering Science),2007, 41(5): 770-773.
[14] 张  亮, 袁兆成, 黄  震. 流固耦合有限元法用于油底壳模态计算[J]. 振动与冲击, 2003, 22(4): 100-102.
ZHANG Liang, YUAN Zhao-chen, HUANG Zhen. Fluid-Structure Coupled Applied in Oil Pan’s Mode Calculation. Journal of Vibration and Shock, 2003, 22(4): 100-102.
[15] 冯  威, 袁兆成, 刘伟哲. 机油参数对液固耦合油底壳辐射声场的影响[J]. 振动与冲击, 2006, 25(1): 150-152.
FENG Wei, YUAN Zhao-chen, LIU Wei-zhe. Influence of oil parameters on the radiant acoustic field of liquid-solid coupled oil pan[J]. Journal of Vibration and Shock, 2006, 25(1): 150-152.
[16] Guido C, Pierluigi C, Fabio M, et al. Exponential weighted method and a compromise programming method for multi-objective operation of plug-in vehicle aggregators in microgrids. Electrical Power and Energy Systems. 2014, 56(1): 374-384.

PDF(2042 KB)

Accesses

Citation

Detail

段落导航
相关文章

/