基于小波包变换和时变频率的结构地震损伤评估

何浩祥1,2,陈奎1,闫维明1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (7) : 23-30.

PDF(2509 KB)
PDF(2509 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (7) : 23-30.
论文

基于小波包变换和时变频率的结构地震损伤评估

  • 何浩祥1,2,陈奎1,闫维明1,2
作者信息 +

Seismic Damage Assessment Based on Wavelet Packet Transform and Time-Varying Frequencies

  • HE Hao-xiang1,2,  CHEN Kui1,  YAN Wei-ming1,2 
Author information +
文章历史 +

摘要

基于频率变化的结构地震损伤评估方法具有机理明确和精度较高等特点,但传统信号分析方法在时频分辨率上不能同时满足精度要求,导致时变频率不能直接从响应信号中精确获取,影响频率法损伤评估的应用。依据时频边缘条件提出时频谱分析精度评价标准,通过对比不同的信号分析方法,确认具有特定基函数的小波包变换是获取精确时变功率谱的有效工具。提出基于小波包脊的时变频率提取方法,在此基础上依据结构频率的变化可计算结构时变损伤指标,并最终实现结构多维地震损伤评估。算例表明基于小波包变换和时变频率的结构地震损伤评估方法可以较准确地反映结构的整体损伤演变过程和最终损伤程度。应用该方法时仅需要结构的位移时程,在结构动力分析、抗震验算以及实际结构的震害评估中均具有良好的适用性。

Abstract

The seismic damage assessment method based on frequency changes is applied with the advantages such as clear mechanism and high precision, but the time resolution and the frequency resolution can not be accurately meet at the same time when the traditional methods for signal analysis are used. Hence, the time-varying frequencies cannot be obtained directly from the response signals and the application of this damage assessment method is insufficient. The corresponding accuracy evaluation criterion for different signal analysis methods is presented based on the marginal condition in time-frequency domain, and wavelet packet decomposition method with special wavelet basis functions is verified as an efficient tool in establishing time-varying power spectrum on the basis of theoretical and computational analysis. The time-varying frequency extraction method based on wavelet packet ridge is proposed, and the time-varying seismic damage index can be calculated according to frequency changes, furthermore, the multi-dimensional seismic damage assessment can be realized. The examples show that the damage assessment method based on wavelet packet transform and time-varying frequency can accurately reveal the overall damage evolution process and the eventual damage state. This method only requires structural displacement histories, and has superior adaptability on structural dynamic analysis, seismic design verification and seismic damage assessment for actual structures.

 

关键词

地震 / 损伤评估 / 小波包变换 / 时变频率 / 时变功率谱

Key words

earthquake / damage assessment / wavelet packet transform / time-varying frequency / time-varying power spectrum

引用本文

导出引用
何浩祥1,2,陈奎1,闫维明1,2. 基于小波包变换和时变频率的结构地震损伤评估[J]. 振动与冲击, 2016, 35(7): 23-30
HE Hao-xiang1,2, CHEN Kui1, YAN Wei-ming1,2 . Seismic Damage Assessment Based on Wavelet Packet Transform and Time-Varying Frequencies[J]. Journal of Vibration and Shock, 2016, 35(7): 23-30

参考文献

[1] 胡聿贤. 地震工程学[M]. 北京: 地震出版社, 2006.
Hu Yuxian. Earthquake Engineering [M]. Beijing: Seismological Press, 2006.
[2] 李刚, 程耿东. 基于性能的结构抗震设计-理论、方法与应用[M]. 北京: 科学出版社, 2004: 1-3.
Li Gang, Chen Gengdong. Performance-based seismic design of structures-theory, method and application [M]. Beijing: Science Press, 2004: 1-3. (in Chinese)
[3] He Hao Xiang, Cong Maolin. Earthquake Damage Assessment for RC Structures Based on Fuzzy Sets [J]. Mathematical Problems in Engineering, 2014, 2013(254865): 1–13. 
[4] Wilfried B Krätzig, Yuri S Petryna. Quasistatic Seismic Damage Indicators for RC Structures from Dissipating Energies in Tangential Subspaces [J]. Mathematical Problems in Engineering, 2014, 2014(615792): 1–11.
[5] J. N. Yang, S. Pan, S. Lin. Least-squares estimation with unknown excitations for damage identification of structures [J]. Engineering Mechanics, 2007, 133(1): 12-21.
[6] Y. Lei, Y. Wu. Identification of Nonlinear Structural Parameters Under Limited Input and Output Measurements [J].  International Journal of Non-Linear Mechanics, 2012, 47(4): 1141–1146.
[7] 伊廷华, 李宏男, 李兵. 地震动信号小波谱分析与结构损伤评估[J]. 振动与冲击, 2006, 25(5): 32-36.
Yi Tinghu,Li Hongnan,Li Bing. Seismic Response Analysis Using wavelet Spectrum and Structural Damage Assessment [J]. Journal of Vibration and Shock, 2006, 25(5): 32-36.
[8] 毛晨曦, 周文松, 欧进萍. 基于小波能量传递函数谱的结构损伤识别[J]. 哈尔滨工程大学学报, 2011, 43(8): 130-134.
Mao Chenxi,Zhou wensong,OU Jingping. Damage assessment based on wavelet energy transfer function spectrum [J]. Journal of Harbin Institute of Technology, 2011, 43(8): 130-134.
[9] Huang, N.E., Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies [J]. Reviews of Geophysics, 2008, 46(1):1–23.
 [10] Wang Zuocai, Genda Chen. A Recursive Hilbert-Huang Transform Method for Time-Varying Property Identification of Linear Shear-Type Buildings under Base Excitations [J]. Journal of Engineering Mechanics, 2012, 138(6): 631-639.
[11] 樊剑, 刘铁, 胡亮. 基于现代时频分析技术的地震波时变谱估计[J]. 振动与冲击, 2007, 26(11): 79-82.
Fan Jian,Liu Tie,Hu Liang. Time-varying Spectrum Estimation of Earthquake Ground Motion via Modern Time-frequency Analysis [J]. Journal of Vibration and Shock, 2007, 26(11): 79-82.
[12] Priestley M B. Power Spectral analysis of nonstationary random processes [J]. Journal of Sound and Vibration, 1967, 6(1): 86-97.
[13] Cohen L. Time-Frequency Analysis: Theory and Applications [M]. Prentice-Hall, New York, 1995.
[14] 张贤达, 保铮. 非平稳信号分析与处理[M] .北京:国防工业出版社,1998.
Zhang Xianda, Bao Zheng. Non-stationary Signal Analysis and Processing[M]. Beijing: National Defense Industry Press, 1998.
[15] 陈清军, 李英成. 基于演变谱和正交化HHT法的类谐和长周期地震动合成[J]. 湖南大学学报, 2012, 39(11): 20-27.
Chen Qingjun,Li Yingcheng. Simulation of harmonic-like long-period ground motion based on evolutionary spectra and orthogonal HHTmethod [J]. Journal of Hunan University, 2012, 39(11): 20-27.
[16] 李宏男. 结构多维抗震理论[M]. 北京:科学出版社, 2006.
Li Hongnan. Earthquake Resistant Theory of Structures to Multi-dimensional Excitations [M]. Beijing: Science Press, 2006.

PDF(2509 KB)

Accesses

Citation

Detail

段落导航
相关文章

/