载荷作用下EPS混凝土中弹性波传播特性研究

徐松林,方春艳,周伟达,郑航,周李姜

振动与冲击 ›› 2016, Vol. 35 ›› Issue (7) : 69-75.

PDF(1648 KB)
PDF(1648 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (7) : 69-75.
论文

载荷作用下EPS混凝土中弹性波传播特性研究

  • 徐松林,方春艳,周伟达,郑航,周李姜
作者信息 +

Investigation of elastic wave propagation in EPS concrete under compression loading

  •  XU Song-lin, FANG Chun-yan, ZHOU Wei-da, ZHENG Hang, ZHOU Li-jiang
Author information +
文章历史 +

摘要

应用EPS混凝土来模拟含缺陷的岩石材料。对EPS粒径分别为1、2和3mm的三种EPS混凝土试样进行了载荷作用下不同频率的弹性波传播实验研究。采用单一频率脉冲叠合的方法来精确确定材料的波速,结果表明:EPS混凝土的p波波速随载荷增加在试件的开始压密实阶段有较明显的增大趋势,当试件相对密实,波速增加不是很明显;s波波速随载荷增加有一定程度增加,但幅度比p波波速增加得小得多。应用一种相对波速的方法,即将波速与当前载荷下材料的声波速度进行对比,可以较好地分析波速与载荷和频率的关系。最后对波速与载荷和频率的关系进行了理论模拟分析。此研究对于应用弹性波进行材料和结构的无损检测等技术方面有很好的参考意义。

Abstract

EPS concrete is taken as model material for rock sample with defects at the meso scale. Series of experiments of elastic wave propagation are conducted in the present paper to investigate three kinds of EPS concrete samples, with EPS particle diameters 1mm, 2mm, or 3mm, under different frequencies and axial loads. A so-called Pulse Echo Overlap method (PEO) is employed to accurately determine the wave speed of sample at single frequency. Results show that p wave speed of EPS concrete sample increases obviously with loads increasing at the initial densification stage, and it increases slightly when the sample is compressed densely; s wave speed increases with loads increasing, but its increasing amplitude is much lower than that of p wave. A relative speed method, which comparing wave speed to real-time sound speed of material under loading, is proposed to analyze the relationship of speed to loads and frequencies. The model simulation is henceforth conducted on a dimensional theory to reveal relationship of wave speed to loads and frequencies. It is meaningful and helpful for non-destructive testing of materials and structures.

关键词

弹性波 / EPS混凝土 / 载荷作用 / P波 / S波

Key words

Elastic wave / EPS concrete / loading effect / P wave / S wave

引用本文

导出引用
徐松林,方春艳,周伟达,郑航,周李姜. 载荷作用下EPS混凝土中弹性波传播特性研究[J]. 振动与冲击, 2016, 35(7): 69-75
XU Song-lin, FANG Chun-yan, ZHOU Wei-da, ZHENG Hang, ZHOU Li-jiang. Investigation of elastic wave propagation in EPS concrete under compression loading[J]. Journal of Vibration and Shock, 2016, 35(7): 69-75

参考文献

[1] 胡俊,巫绪涛,胡时胜. EPS混凝土动态力学性能研究[J]. 振动与冲击,2011,30(7):205-209.
HU Jun, WU Xutao, HU Shisheng. Dynamic mechanical behavior of EPS concrete[J]. Journal of Vibration and Shock, 2011, 30 (7): 205-209
[2] 席道瑛,徐松林,编著,多孔岩土材料的本构理论[M]. 合肥:中国科学技术大学出版社, 2015.
.XI Daoying,XU Songlin,Constitutive relationship theory of porous rock and soil materials[M],Hefei: University of Science and Technology of China Press, 2015.
[3] 席道瑛,徐松林,编著, 岩石物理学基础[M]. 合肥:中国科学技术大学出版社, 2012.
.XI Daoying, XU Songlin, Foundations of Rock Physics[M]. Hefei University of Science and Technology of China Press, 2012
[4] 席道瑛,徐松林,刘永贵,等,饱和砂岩的滞弹性弛豫衰减特征及微观机理的探索[J]. 物理学报,2012, 61(14):149101-1-8
XI Daoying,XU Songlin, Liuyonggui, et al,Viscoelastic relaxation attenuation property for saturated sandstones and corresponding investigation on micro-scale mechanism[J]. Acta Physica Sinica, 2012, 61(14):149101-1-8
[5] 席道瑛,徐松林,杜赟,泵油饱和砂岩的粘弹行为的实验研究[J]. 物理学报,2012, 61(11):119102-1-7
XI Daoying,XU Songlin, DU Yun,Experimental research on viscoelastic behavior for pump-oil saturated sandstones[J]. Acta Physica Sinica, 2012, 61(11):119102-1-7
[6] 徐松林,刘永贵, 席道瑛,等,弹性波在含双裂纹岩体中的传播分析[J]. 地球物理学报,2012,55(3):944-952
XU Songlin, LIU Yonggui, XI Daoying, et al. Analysis of the propagation of elastic wave in rocks with double-crack model[J]. Chinese Journal of Geophysics, 2012,55(3):944-952
[7] 谭子翰,徐松林,刘永贵,等,含多种尺寸缺陷岩体中的弹性波散射[J]. 应用数学和力学,2013, 34(1): 38-48
TAN Zihan, XU Songlin, LIU Yonggui, et al, Scattering of elastic waves by multi-size defects in rock mass[J]. Applied Mathematics and Mechanics, 2013, 34(1): 38-48
[8] 罗松南,程红梅,童桦. 混凝土结构中钢精对波传播的影响分析[J]. 振动与冲击,2006,24(4): 66-68.
LUO Songnan, CHENG Hongmei, TONG Hua. Analysis of effects of reinforced steel bar on wave propagation in concrete media[J]. Journal of Vibration and Shock, 2006,24(4): 66-68
[9] 徐松林,刘永贵,席道瑛,等. 卸荷过程岩体中弹性波波速变化分析[J]. 岩土力学,2011,32(10): 2907-2915
XU Songlin, LIU Yonggui, XI Daoying, et al. Analysis of variation of elastic wave velocity in rock mass under unloading condition[J]. Rock and Soil Mechanics, 2011,32(10): 2907-2915
[10] 刘永贵,徐松林,席道瑛,等,节理玄武岩体弹性波频散效应研究[J]. 岩石力学与工程学报,2010,29(s1):3314-3320
LIU Yonggui, XU Songlin, XI Daoying, et al. Dispersion effect of elastic wave in jointed basalts[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(s1):3314-3320
[11] Winkler KW. Frequency dependent ultrasonic properties of high-porosity sandstones[J]. Journal of Geophysical Research: Solid Earth. 1983, 88(B11): 9493-9499
[12] Savich A, Razumov V, Khositashvili G, Pershutkina A, Tetradze T. Refinement of the engineering-geological conditions of the foundation of the Khudoni arch dam[J]. Hydrotechnical Construction. 1990, 24(2): 122-130
[13] Savich A. Long-term geophysical observations at hydrotechnical construction sites[J]. Power Technology and Engineering (formerly Hydrotechnical Construction). 1993, 27(3): 123-130
[14] 刘高, 谌文武, 梁收运, 等. 小观音坝址区岩体弹性波特征及其应用[J]. 岩石力学与工程学报, 2003,22(2):2819-2823.
LIU Gao, SHEN Wenwu, LIANG Shouyun, et al. Charateristics of elastic wave and its application to Xiaoguanyin dam site on Yellow river[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 2819-2823
[15] Grêt A, Snieder R, Özbay U. Monitoring in situ stress changes in a mining environment with coda wave interferometry[J]. Geophysical Journal International. 2006, 167(2): 504-508
[16] 王晓杰,楚泽涵,柴细元,等. 用正交偶极子声波测井资料估算地层应力场[J]. 测井技术. 2004, 28(4): 285-288
WANG Xiaojie, CHU Zehan, CAI Xiyuan, et al. Estimating formation stress from cross 2 dipode acoustic measurement[J]. Well Logging Technology, 2004, 28(4): 285-288
[17] 邓向允,徐松林,李广场,等. 缺陷对玄武岩中声波波速影响的试验研究[J]. 实验力学,2009,24(1):13-20
DENG Xiangyun, XU Songlin, LI Guangchang, et al. Experimental study of defect effect on sonic velocity in basalt[J]. Chinese Journal of Experimental Mechanics, 2009,24(1):13-20
[18] 邓向允,徐松林,李广场,等. 玄武岩中裂隙分布形式对声波传播的影响[J]. 实验力学,2009,24(5):421-426
DENG Xiangyun, XU Songlin, LI Guangchang, et al. Study of crack distribution effect on sound wave propagation in basalt[J]. Chinese Journal of Experimental Mechanics, 2009,24(5):421-426
[19] Sinha BK, Kostek S, Norris AN. Stoneley and flexural modes in pressurized boreholes[J]. Journal of Geophysical Research: Solid Earth (1978–2012). 1995, 100(B11): 22375-22381
[20] Sinha BK, Liu Q-H, Kostek S. Acoustic waves in pressurized boreholes: A finite difference formulation[J]. Journal of Geophysical Research. 1996, 101(B11): 25173-25180
[21] Liu QH, Sinha BK. A 3D cylindrical PML/FDTD method for elastic waves in fluid-filled pressurized boreholes in triaxially stressed formations[J]. Geophysics. 2003, 68(5): 1731-1743
[22] Chapman M, Zatsepin SV, Crampin S. Derivation of a microstructural poroelastic model[J]. Geophysical Journal International. 2002, 151(2): 427-451
[23] Chapman M. Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity[J]. Geophysical Prospecting. 2003, 51(5): 369-379
[24] Achenbach JD, Gautesen AK, McMaken H. 1982.Ray methods for waves in elastic solids: with applications to scattering by cracks[M]: Pitman Advanced Pub. Program;
[25] Zhang C, Achenbach J. Scattering by multiple crack configurations[J]. ASME, Transactions, Journal of Applied Mechanics. 1988, 55: 104-110
[26]谭子翰. 复杂岩体中弹性波的频散和衰减规律研究[D].硕士学位论文, 合肥:中国科学技术大学,2013
TAN Zihan. Study on dispersion and attenuation of elastic waves in complicated rock mass[D]. Master dissertation, Hefei: University of Science and Technology of China, 2013
[27] 徐松林,郑文,刘永贵,等. 岩体中弹性波传播尺度效应的初步分析[J]. 岩土工程学报,2011, 33(9): 1348-1356
XU Songlin, ZHENG Wen, LIU Yonggui, et al. A preliminary analysis of scale effect of elastic wave propagation in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1348-1356
[28] Li B, Chen K, Kung J, et al. Sound velocity measurement using transfer function method[J]. Journal of Physics: Condensed Matter, 2002, 14:11337-11342
[29] Li B, Kung J, Liebermann R. Modern techniques in measuring elasticity of earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus[J]. Physics of the Earth and Planetary Interiors, 2004, 143-144: 559-574
[30] Li B, Liebermann R. Study of the Earth's interior using measurements of sound velocities in minerals by ultrasonic interferometry[J]. Physics of the Earth and Planetary Interiors, 2014, 233:135-153
 

PDF(1648 KB)

Accesses

Citation

Detail

段落导航
相关文章

/