基于行星滚柱丝杠副的机电作动器动态特性分析

乔冠, 刘更, 马尚君, 佟瑞庭, 周勇

振动与冲击 ›› 2016, Vol. 35 ›› Issue (7) : 82-88.

PDF(2100 KB)
PDF(2100 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (7) : 82-88.
论文

基于行星滚柱丝杠副的机电作动器动态特性分析

  • 乔冠, 刘更, 马尚君, 佟瑞庭, 周勇
作者信息 +

Dynamic Characteristic Analysis of Electro-Mechanical Actuator Based on Planetary Roller Screw Mechanism

  • QIAO Guan, LIU Geng, MA Shang-jun, TONG Rui-ting, ZHOU Yong
Author information +
文章历史 +

摘要

以舵回路系统中机电作动器为研究对象,考虑机电作动器的安装和舵面负载连接,建立了基于行星滚柱丝杠副的机电作动器数学模型。采用AMESim进行仿真对比分析,探讨了机电作动器中结构刚度、摩擦和间隙等非线性因素对系统动态性能的影响。结果表明:相比传动刚度,结构刚度中固定刚度的提高对于系统动态响应的改善作用更明显;行星滚柱丝杠副间隙量越大,系统的阶跃响应波动幅值越明显;在给定舵控指令下,机电作动器的仿真位移输出响应误差最大为1.8mm,相对误差为1.2%,从而较好的反映了模型的有效性,为功率电传机电作动器的进一步结构优化和控制提供了理论依据。

Abstract

Aiming at electro-mechanical actuators (EMA) in the actuator loop, a model of EMA based on a planetary roller screw mechanism (PRSM) is developed to investigate the effects of nonlinearities associated with structural stiffness, friction and clearance on dynamic characteristic in EMA systems. Anchorage compliance and transmission compliance connected to aerodynamic force are considered. The results presented in the AMESim show that the improvement of anchorage compliance has a more important influence on transient response than transmission compliance. The fluctuation of step response becomes more obvious with a bigger clearance in the PRSM. Besides, under a certain input command, the maximum output error of EMA is 1.8mm and the relative error is 1.2% with respect to the displacement response. The nonlinear model is proved to be an available one which provides the theoretical foundation to the further structure optimization and control of EMA.

关键词

机电作动器 / 行星滚柱丝杠副 / 动态特性 / 结构刚度 / 间隙非线性

Key words

electro-mechanical actuator / planetary roller screw mechanism / dynamic characteristic / structural stiffness / clearance nonlinearity

引用本文

导出引用
乔冠, 刘更, 马尚君, 佟瑞庭, 周勇. 基于行星滚柱丝杠副的机电作动器动态特性分析[J]. 振动与冲击, 2016, 35(7): 82-88
QIAO Guan, LIU Geng, MA Shang-jun, TONG Rui-ting, ZHOU Yong. Dynamic Characteristic Analysis of Electro-Mechanical Actuator Based on Planetary Roller Screw Mechanism[J]. Journal of Vibration and Shock, 2016, 35(7): 82-88

参考文献

[1] Jensen S C, Jenney G D, Dawson D. Flight test experience with an electromechanical actuator on the F-18 systems research aircraft [R], NASA, 1998.
[2] Dominique V D B. The A380 flight control electro-hydrostatic actuators, achievements and lessons learnt[C]. 25th International Congress of the Aeronautical Sciences (ICAS), Sep. 5th, 2006.
[3] Karam W, Mare J C. Modeling and simulation of mechanical transmission in roller-screw electro-mechanical actuators[J]. Aircraft Engineering and Aerospace Technology, 2009, 81(4):288-298.
[4] Karam W, Mare J C. Force control of a roller-screw electromechanical actuator for dynamic loading of aerospace actuators[C]. Fluid Power and Motion Control Conference, Bath, 2008.
[5] Mare J C. Dynamic loading systems for ground testing of high speed aerospace actuators[J]. Aircraft Engineering and Aerospace Technology, 2006, 78(4): 275-282.
[6] Liscouët J, Budinger M, Mare J C, et al. Modelling approach for the simulation-based preliminary design of power transmissions[J]. Mechanism and Machine Theory, 2011, 46(3): 276–289.
[7] Habibi S, Roach J, Luecke G. Inner-loop control for electro-mechanical (EMA) flight surface actuation systems[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2008, 130: 051002-1-13.
[8] 齐海涛, 付永领. 基于AMESim的电动静液作动器的仿真分析[J]. 机床与液压, 2007, 35(3): 184-186.
QI Hai-tao, FU Yong-ling. Simulation of electro-hydrostatic actuator based on AMESim[J]. Machine Tool and Hydraulics, 2007, 35(3): 184-186.
[9] 马尚君, 刘  更, 周建星, 等. 行星滚柱丝杠副运转过程动态特性分析[J]. 振动与冲击, 2013, 32(3): 167-171, 187.
MA Shang-jun, LIU Geng, ZHOU Jian-xing, et al. Dynamic characteristic analysis of a planetary roller screw in operating process[J]. Journal of Vibration and Shock, 2013, 32(3): 167-171, 187.
[10] 周元钧, 赵运坤, 葛云海. 复合式余度机电作动系统容错控制与性能分析[J]. 北京航空航天大学学报, 2008, 34(3): 285-289.
ZHOU Yuan-jun, ZHAO Yun-kun, GE Yun-hai. Fault-tolerant control method and characteristic analysis of hydraulic redundant EMA system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(3): 285-289.
[11] 付永领, 齐海涛, 王利剑, 等. 混合作动系统的工作模式研究[J]. 航空学报, 2010, 31(6): 1177-1184.
FU Yong-ling, QI Hai-tao, WANG Li-jian, et al. Research on operating modes in hybrid actuation systems[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1177-1184.
[12] Nordin M, Galic J, Gutman P. New models for backlash and gear play[J]. Int. J. Adapt. Control Signal Process., 1997, 11: 49–63.
[13] 王占林. 液压伺服控制[M]. 北京: 北京航空学院出版社, 1987.
[14] 齐海涛, 付永领, 祁晓野. 一体化数字液压作动系统的建模仿真和控制[J]. 北京航空航天大学学报, 2014, 40(1): 44-47.
QI Hai-tao, FU Yong-ling, QI Xiao-ye. Modelling, simulation and control of integrated digital hydraulic actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 44-47.

PDF(2100 KB)

Accesses

Citation

Detail

段落导航
相关文章

/