基于数值-解析方法测量静压条件下阻尼材料动态力学参数

陶 猛 江 坤

振动与冲击 ›› 2016, Vol. 35 ›› Issue (7) : 96-101.

PDF(1705 KB)
PDF(1705 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (7) : 96-101.
论文

基于数值-解析方法测量静压条件下阻尼材料动态力学参数

  • 陶  猛        江  坤
作者信息 +

Dynamic parameters measurement of damping materials under hydrostatic pressure based on a hybrid numerical-analytical method

  • Tao Meng     Jiang Kun
Author information +
文章历史 +

摘要

建立了一种测量静压条件下阻尼材料动态力学参数的数值-解析方法。首先,分别制作两种空腔半径不同的圆柱空腔覆盖层样品,测量两种样品在静压力下的复反射系数。其次,采用有限元法仿真静压力下的空腔结构变形,在此基础上同样采用有限元法计算复反射系数。以实测复反射系数和计算复反射系数建立二元非线性方程组,利用牛顿迭代法求解方程组可获得复弹性模量和复泊松比等黏弹性动态力学参数。对聚氨酯材料制作的样品进行了复反射系数测量,分析了静压力对聚氨酯材料动态力学参数的影响规律。最后,测量了某不同结构吸声覆盖层静压下的反射系数,并与采用实测材料参数计算的反射系数进行了比较,验证了该方法的正确性。

Abstract

The viscoelastic dynamic parameters measurement of damping materials under hydrostatic pressure based on a hybrid numerical-analytical method has been developed. First, two different samples of sound absorption coatings which contain cylindrical holes with two different radii will be tested in order to obtain the two different measured complex reflection coefficient under hydrostatic pressure. Second, the simulated complex reflection coefficient should be carried out based on the structural deformation calculated by using the FEM method. Then, taking account of the measured and the simulated complex reflection coefficients simultaneously, two nonlinear equations will be formed. Using the Newton iteration method to solve the nonlinear equations, the viscoelastic dynamic parameters including the complex elastic modulus and the complex Poisson’s ratio will be obtained. Then, two samples made by the polyurethane have been tested in the water-filled acoustic-pipe, and the effect of hydrostatic pressure on the viscoelastic dynamic parameters has been analyzed and summarized. Finally, the reflection coefficient of another different sound absorption coating which has been tested under hydrostatic pressure, compared with the simulated reflection coefficient from which the viscoelastic dynamic parameters is measured above, demonstrates that the present method is correct.

关键词

数值-解析方法 / 静水压力 / 阻尼材料 / 动态力学参数

Key words

Numerical-analytical method / Hydrostatic pressure / Damping material / Dynamic parameters

引用本文

导出引用
陶 猛 江 坤 . 基于数值-解析方法测量静压条件下阻尼材料动态力学参数[J]. 振动与冲击, 2016, 35(7): 96-101
Tao Meng Jiang Kun . Dynamic parameters measurement of damping materials under hydrostatic pressure based on a hybrid numerical-analytical method[J]. Journal of Vibration and Shock, 2016, 35(7): 96-101

参考文献

[1] 范军, 汤渭霖. 覆盖粘弹性层的水中双层弹性球壳的回声特性. 声学学报, 2001, 26 (4): 302 - 306
Fan J, Tang W L. Echoes from double elastic spherical shell covered with visocoelastic materials in water. Shengxue Xuebao / Acta Acoust, 2001, 26 (4): 302 - 306
[2] 范蓉平, 孟光, 贺才春等. 粘弹性阻尼材料降低列车车内噪声的试验研究. 振动与冲击, 2008, 27 (6): 123 - 127
Fan R P, Meng G, He C C, et al. Experiment study on viscoelastic damping materials for noise control in railway vehicles. Journal of Vibration and Shock, 2008, 27 (6): 123 - 127
[3] 李明明, 方勃, 黄文虎. 基于压电堆和粘弹性材料的新型整星混合隔振系统. 振动与冲击, 2012, 31 (16): 148 - 152
Li M M, Fang B, Huang W H. New type of whole-spacecraft hybrid vibration isolation system based on piezoelectric stacks and viscoelastic material. Journal of Vibration and Shock, 2012, 31 (16): 148 - 152
[4] 陶猛, 卓琳凯. 静水压力下吸声覆盖层的声学性能分析. 上海交通大学学报, 2011, 45 (9): 1340 - 1344
Tao M, Zhuo L K. Effect of Hydrostatic Pressure on Acoustic Performance of Sound Absorption Coating. Journal of Shanghai Jiaotong University, 2011, 45 (9): 1340 - 1344
[5] Park J, Lee J, Park J. Measurement of viscoelastic properties from the vibration of a compliantly supported beam. Journal of the Acoustical Society of America, 2011, 130 (6): 3729 - 3735
[6] Policarpo H, Neves M M, Maia N M M. A simple method for the determination of the complex modulus of resilient materials using a longitudinally vibrating three-layer specimen. Journal of Sound and Vibration, 2013, 332 (2): 246 - 263
[7] Yuan H, Guzina B, Chen S, et al. Estimation of the complex shear modulus in tissue-mimicking materials from optical vibrometry measurements. Inverse Problems in Science and Engineering, 2012, 20 (2): 173 - 187
[8] 尹铫, 刘碧龙, 白国锋等. 激光测振有限元反演优化方法测量黏弹材料动态力学参数. 声学学报, 2013, 38 (2): 172 - 180
Yin Y, Liu B L, Bai G F, et al. A study on polymer modulus test using laser-based finite element method. Shengxue Xuebao, 2013, 38 (2): 172 - 180
[9] Piquette J C. Shear property determination from underwater acoustic panel tests. Journal of the Acoustical Society of America, 2004, 115 (5): 2110 - 2121
[10] 宋扬, 杨士莪, 黄益旺. 中高频段下的粘弹性材料声学参数测量. 材料科学与工艺, 2007, 5 (1): 44 - 46
Song Y, Yang S E, Huang Y W. Acoustic parameters measurement of viscoelastic material in median and high frequency. Materials Science and Technology, 2007, 5 (1): 44 - 46
[11] Guillot F M, Trivett D H. A dynamic Young’s modulus measurement system for highly compliant polymers. Journal of the Acoustical Society of America, 2003, 114 (3): 1334 - 1345
[12] Guillot F M, Trivett D H. Complete elastic characterization of viscoelastic materials by dynamic measurements of the complex bulk and Young's moduli as a function of temperature and hydrostatic. Journal of Sound and Vibration, 2011, 330 (14): 3334 - 3351
[13] 黄修长, 朱蓓丽, 胡碰等. 静水压力下橡胶动态力学参数的声管测量方法. 上海交通大学学报, 2013, 47 (10): 1503 - 1508
Huang X C, Zhu B L, Hu P, et al. Measurement of dynamic properties of rubber under hydrostatic pressure by water-filled acoustic tube. Journal of Shanghai Jiaotong University, 2013, 47 (10): 1503 - 1508
[14] 徐瑞民. 二元非线性方程组求根的牛顿迭代法. 山东轻工业学院学报, 2009, 23 (4): 89 - 91
Xu R M. Newton’s method for the nonlinear function of two independent variables. Journal of Shandong Institute of Light Industry, 2009, 23 (4): 89 - 91
[15] GB/T 5266-2006. 声学 水声材料纵波声速和衰减系数的测量 脉冲管法 [S]. 2006
GB/T 5266-2006. Acoustics - Measurements of the longitudinal wave velocity and attenuation coefficient for underwater acoustical materials - Pulse tube method [S]. 2006
[16] 朱蓓丽, 肖今新. 双水听器传递函数法低频测试及误差分析. 声学学报, 1994, 19 (5): 351 - 360
Zhu B L, Xiao J X. A two-hydrophone transfer function method for measuring low-frequency acoustic properties and its error analysis. Shengxue Xuebao, 1994, 19 (5): 351 - 360
[17] Skelton E A, James J H. Theoretical acoustics of underwater structures. London: Imperial College Press, 1997
[18] T Pritz. The Poisson’s loss factor of solid viscoelastic materials. Journal of Sound and Vibration, 2007, 306 (3): 790 - 802

PDF(1705 KB)

Accesses

Citation

Detail

段落导航
相关文章

/