界面掀起和轴力对组合梁动力弯曲特性的影响

杨骁,李晓伟,汪德江

振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 124-131.

PDF(3187 KB)
PDF(3187 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 124-131.
论文

界面掀起和轴力对组合梁动力弯曲特性的影响

  • 杨骁,李晓伟,汪德江
作者信息 +

INFLUENCES OF THE INTERFACIAL UPLIFT AND AXIAL LOAD ON DYNAMIC BENDING CHARACTERISTICS OF COMPOSITE BEAMS

  • YANG Xiao, LI Xiaowei, WANG Dejiang
Author information +
文章历史 +

摘要

考虑组合梁界面的法向/切向部分相互作用以及各子梁轴力的二阶效应,利用Hamilton原理得到了位移描述的Euler-Bernoulli组合梁非线性动力弯曲及一阶近似的初边值问题,并应用微分求积法研究了考虑界面法向/切向部分相互作用组合梁的临界荷载和固有频率。在通过与已有解析解和有限元结果对比验证了本文微分求积法正确性和适用性的基础上,进行了参数分析,研究了组合梁界面刚度对组合梁动力特性和稳定性的影响以及轴力对组合梁固有频率的影响。数值结果表明:组合梁的固有频率与临界荷载随界面刚度的增加而增加,并逐步趋于完全作用组合梁的固有频率与临界荷载;当轴向压力逐渐增加并趋于临界载荷时,组合梁的一阶固有频率逐渐减小并趋于零,并且,临界载荷随法向和切向刚度的增加而增加。

Abstract

Taking into account the normal/tangential interfacial partial interaction and the second-order effect of axial load of each sub-beam, displacement-based nonlinear and first order approximate initial-boundary value problems for the dynamic bending of the Euler-Bernoulli composite beam, by virtue of the Hamilton’s principle, are formulated, and then the buckling load and natural frequencies of the composite beam with partial interaction are investigated by the differential quadrature method (DQM).  On the basis of the correctness and validaty of the proposed DQM verified via the comparisons with the analytical solutions available and FEM ones, the parameter study is conducted, and the influences of the interfacial stiffness on dynamic characteristics and stability and the effects of the axial force on the natural frequencies are studied.  The numerical results show that the natural frequencies and buckling load of the composite beam increase with the increase of its interfacial stiffness, and eventually approaching to the ones of full composite beam, and the first natural frequency decreases to zero with the increase of the axial load approaching to the buckling load.  And furthermore, the critical load increases with the the interfacial normal and tangential stiffness increase.
 

 

关键词

组合梁 / 稳定性与动力特性 / 界面滑移和掀起 / 二阶效应 / 微分求积法

Key words

composite beams / stability and dynamic characteristic / interfacial slip and uplift / second-order effect / differential quadrature method

引用本文

导出引用
杨骁,李晓伟,汪德江. 界面掀起和轴力对组合梁动力弯曲特性的影响[J]. 振动与冲击, 2016, 35(8): 124-131
YANG Xiao, LI Xiaowei, WANG Dejiang. INFLUENCES OF THE INTERFACIAL UPLIFT AND AXIAL LOAD ON DYNAMIC BENDING CHARACTERISTICS OF COMPOSITE BEAMS[J]. Journal of Vibration and Shock, 2016, 35(8): 124-131

参考文献

[1] Hajianmaleki M, Qatu M S. Vibrations of straight and curved composite beams: A review[J]. Composite Structures, 2013, 100(6): 218-232.
[2] 欧阳煜, 黄奕辉, 钱在兹, 顾祥林等. 玻璃纤维片材加固混凝土梁的抗弯性能研究[J]. 土木工程学报, 2002, 35(3): 1-6.
Ouyang Y, Huang YH, Qian ZZ, Gu XL. The analysis of flexural behavior of reinforced concrete beam strengthened with glass fiber reinforced plastic sheet[J]. China Civil Engineering Journal, 2002, 35(3): 1-6.
[3] 聂建国, 刘明, 叶列平. 钢-混凝土组合结构[M]. 北京: 中国建筑工业出版社, 2005.
Nie Jianguo, Liu Ming, Ye Lieping. Composite structures of steel and concrete [M]. Beijing: China Architecture and Building Press, 2005. (in Chinese).
[4] Newmark N M, Siess C D, Viest I M. Tests and analysis of composite beams with incomplete interaction[J]. Experimental Stress Analysis, 1951, 9(1): 75-92.
[5] 聂建国, 沈聚敏. 滑移效应对钢-混凝土组合梁抗弯强度的影响及其计算[J]. 土木工程学报, 1997, 30(l): 31-36.
Nie Jianguo, Shen Jumin. Slip effect on strength of composite steel-concrete beam[J]. China Civil Engineering Journal, 1997, 30 (1): 31-16 (in Chinese).
[6] Gattesco N. Analytical modeling of nonlinear behavior of composite beams with deformable connection[J]. Journal Constructional Steel Research, 1999, 52(2): 195-218.
[7] Ayoub A. A force-based model for composite steel-concrete beams with partial interaction[J]. Journal Constructional Steel Research, 2005, 61(3): 387-414.
[8] 孙飞飞, 李国强. 考虑滑移、剪力滞后和剪切变形的钢-混凝土组合梁解析解[J]. 工程力学, 2005, 22(2): 96-103.
Sun Feifei, Li Guoqiang. A closed-form solution for steel-concrete composite beams with slip, shear lag and shear deformation[J]. Engineering Mechanics, 2005, 22(2): 96-103 (in Chinese).
[9] Battini J M, Nguyen Q H, Hjiaj M. Non-linear finite element analysis of composite beams with interlayer slips[J]. Computers and Structures, 2009, 87(13/14): 904-912.
[10] Sousa Jr J B M, Oliveira C E M, da Silva A R. Displacement-based nonlinear finite element analysis of composite beam-columns with partial interaction[J]. Journal of Constructional Steel Research, 2010, 66(6): 772-779.
[11] Ranzi G, Dall’ Asta A, Ragni L, Zona A. A geometric nonlinear model for composite beams with partial interaction[J]. Engineering Structures, 2010, 32(5): 1384-1396.
[12] 欧阳煜, 刘慧, 杨骁. 考虑粘结层滑移效应的组合梁弯曲[J]. 工程力学, 2012, 29(9): 215-222.
Ouyang Yu, Liu Hui, Yang Xiao. Bending of composite beam considering effect of adhesive layer slip[J]. Engineering Mechanics, 2012, 29(9): 215-222 (in Chinese).
[13] 徐荣桥, 陈德权. 组合梁挠度计算的改进折减刚度法[J]. 工程力学, 2013,30(2): 285-291.
Xu Rongqiao, Chen Dequan. Modified reduced stiffness method for calculating the deflection of composite beams[J]. Engineering Mechanics, 2013, 30(2): 285-291 (in Chinese).
[14] Adekola A O. Partial interaction between elastically connected elements of a composite beam[J]. International Journal of Solids and Structures, 1968, 4(11): 1125-1135.
[15] Ranzi G, Gara F, Ansourian P. General method of analysis for composite beams with longitudinal and transverse partial interaction[J]. Computers & Structures, 2006, 84(31-32): 2373-2384.
[16] Gara F, Ranzi G, Leoni G. Displacement-based formulations for composite beams with longitudinal slip and vertical uplift[J]. International Journal for Numerical Methods in Engineering, 2006, 65(8): 1197-1220.
[17] Ranzi G, Bradford M A. Composite beams with both longitudinal and transverse partial interaction subjected to elevated temperatures[J]. Engineering Structures, 2007, 29(10): 2737-2750.
[18] Kroflič A, Saje M, Planinc I. Non-linear analysis of two-layer beam with interlayer slip and uplift[J]. Computers & Structures, 2011, 89(23-24): 2414-2424.
[19] Chakrabarti A, Sheikh AH, Griffith M, Oehlers DJ. Analysis of composite beams with longitudinal and transverse partial interactions using higher order beam theory[J]. International Journal of Mechanical Sciences, 2012, 59(1): 115-125.
[20] Guanghui He, Xiao Yang. Finite element analysis for buckling of two-layer composite beams using Reddy's higher order beam theory[J]. Finite Elements in Analysis and Design, 2014, 83(June): 49-57.
[21] 杨骁, 何光辉. Reddy高阶组合梁弯曲的一般解析解法[J]. 固体力学学报, 2014, 35(2): 199-208.
Yang Xiao, He Guanghui. General analytical method for composite beams’ bending using Reddy’s higher order beam theory[J]. Chinese Journal of Solid Mechanics, 2014, 35(2): 199-208 (in Chinese).
[22] Du H, Lim M K, Lin R M. Application of generalized differential quadrature method to structural problems[J]. International Journal for Numerical Methods in Engineering, 1994, 37(11): 1881-1896.
[23] Moradi S, Taheri F. Post buckling analysis of delaminated composite beams by differential quadrature method[J]. Composite Structures, 1999, 46(1): 33-39.
[24] Moradi S, Taheri F. Delamination buckling analysis of general laminated composite beams by differential quadrature method[J]. Composites, Part B: Engineering, 1999, 30(5): 503-511.
[25] Du H, Lim M K, Lin R M. Application of generalized differential quadrature method to structural problems[J]. International Journal for Numerical Methods in Engineering, 1994, 37(11): 1881-1896.
[26] 沈旭栋, 陈伟球, 徐荣桥. 有轴力的部分作用组合梁的动力分析[J]. 振动工程学报, 2012, 25(5): 514-521
Shen Xudong, Chen Weiqiu, Xu Rongqiao. Dynamic analysis of partial-interactive composite beam with axial force[J]. Journal o f Vibrat ion Engineering, 2012, 25(5): 514-521 (in Chinese).

PDF(3187 KB)

Accesses

Citation

Detail

段落导航
相关文章

/