[1] 莫以为,萧德云. 基于进化粒子滤波器的混合系统故障诊断[J]. 控制与决策,2004,19(6):611-615.
MO Yi-wei, XIAO De-yun. Fault diagnosis of hybrid systems based on the evolutionary particle filter[J]. Control and Decision,2004,19(6): 611-615.
[2] Wong M L D, Jack L B, Nandi A K. Modified self-organising map for automated novelty detection applied to vibration signal monitoring [J]. Mechanical Systems and Signal Processing, 2006, 20: 593-610.
[3] Lei Y G, He Z J, Zi Y Y. Application of an intelligent fault diagnosis method to rotating machinery[J]. Expert Systems with Applications, 2009, 36: 9941-9948.
[4] 田承伟, 宗长富, 姜国彬,等. 基于双自适应Kalman滤波的线控转向汽车传感器故障诊断[J].中国公路学报,2009,22(4):115-121.TIANCheng-wei, ZONGChang-fu, JIANGGuo-bin, etal. Sensor Fault Diagnosis for Steer-by-Wire Car Based on Dual Adaptive Kalman Filter[J]. China Journal of High way and Transport, 2009,22(4):115-121.
[5] M.S. Arulampalam, S. Maskell,Neil Gordon, etal. A Tutorial on Particle Filters for On line Non-linear Non-Gaussian Bayesian Tracking[J].IEEE Transactions on Signal Processing, 2002,50(2):174-188.
[6] Bing-Fei Wu, Chih-Chung Kao, Cheng-Lung Jen, et al. A Relative Discriminative Histogram of Oriented-Gradients-Based Particle Filter Approach to Vehicle Occlusion Handling and Tracking[J]. IEEE Transaction on industrial electronics, 2014, 61(8):4228-4237.
[7] Yuanqing Xia, Jingjing Yan, Peng Shi, etal. Stability Analysis of Discrete-Time Systems with Quantized Feedback and Measurements. IEEE Transactions on Industrial Informatics. 2013, 9(1): 313-324.
[8] Amrita Mishra, R. Gayathri, Aditya K. Jagannatham. Random Parameter EM-Based Kalman Filter(REKF) for Joint Symbol Detection and Channel Estimation in Fast Fading STTC MIMO Systems[J]. IEEE Signal Processing Letters, 2014, 21(6): 766-770.
[9] Jian-fang Dou, Jian-xun Li. Robust visual tracking base on adaptively multi-feature fusion and particle filter[J]. Optik, 2014,(125):1680-1686.
[10] Yang W X. Establishment of the mathematical model for diagnosing the engine valve faults by genetic programming[J]. Journal of Sound and Vibration, 2006, 293:213-226.
[11] Lei Y G, He Z , Zi Y Y, et al. A new approach to intelligent fault diagnosis of rotating machinery[J]. Expert Systems with Applications, 2008, 35:1593-1600.
[12] V. Kadirkamanathan, P. Li, M. H. Jaward and and etc. A sequential Monte Carlo filtering approach to fault detection and isolation in nonlinear systems[C]. Proceedings of IEEE Conference on Decision and Control, 2000,5: 4341-4346.
[13] Ping Li, Visakan Kadirkamanathan. Fault detection and isolation in Nonlinear stochastic systems-A combined adaptive Monte Carlo filtering and likelihood ratio approach[J]. International Journal of Control, 2004,77( 12) : 1101-1114.
[14] Jardine A K S,Lin D,Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20::1483-1510.
[15] Lei Y G, He Z , Zi Y Y, et al. New clustering algorithm based fault diagnosis using compensation distance evaluation technique[J]. Mechanical Systems and Signal Processing, 2008, 22:419 -435.
[16] Katsuji U, Toshiharu H. Evolution strategies based particle filters for fault detection[C]. IEEE Symposium on Computational Intelligence in Image and Signal Processing, 2007,(1-5)::58-65.
[17] Bo Zhao, Roger Skjetne, Mogens Blanke, etal. Particle Filter for Fault Diagnosis and Robust Navigation of Underwater Robot[J].IEEE Transactions on control systems technology, 2014,22(6):2399-2407
[18] MO Yi-wei, XIAO De-yun. Hybrid System Monitoring and Diagnosing Based on Particle Filter Algorithm[J]. Acta Automatica Sinica, 2003,29(5):641-648.
[19] Lei Y G, He Z, Zi Y Y. Application of a novel hybrid intelligent method to compound fault diagnosis of locomotive roller bearings[J]. ASME Transactions on Journal of Vibration and Acoustics, 2008,130: 1-6.
[20] 胡振涛,潘泉,杨峰等. 基于CRPF的残差似然比检验故障诊断算法[J]. 系统工程与电子技术,2009,31(12):3022-3025.
HU Zhen-tao, PAN Quan,YANG Feng, and etc.. Residual likelihood ratio test for fault diagnosis based on cost reference particle filter[J]. Systems Engineering and Electronics, 2009,31(12): 3022-3025.
[21] Ping Li, Visakan Kadirkamanatha. Particle Filtering Based Likelihood Ratio Approach to Fault Diagnosis in Nonlinear Stochastic Systems[J]. IEEE Transactions on systems, man, and cybernetics—part c: applications and reviews, 2001, 31(3):337-343.
[22] Siamak Tafazoli, Xuehong Sun. Hybrid System State Tracking and Fault Detection Using Particle Filters[J].IEEE Transactions on control systems technology, 2006,14(6):1078-1087