液体的晃动模态(自然频率、振型与阻尼比系数)是贮液结构设计以及振动控制的重要参数。在液体晃动的模态试验中,需要激发液面的模态运动,但液面的对称模态运动一般比较难以激发出来,使得对称模态参数(特别是阻尼比系数)难以精确识别。本文采用参数激振的方法对矩形、U形和圆形截面容器进行竖向激振,可容易激发出液体表面的前四阶模态(包括对称模态)运动,撤除激励后液体表面按某一特定的振型作自由衰减振动,通过激光测量液体表面波高的自由衰减曲线,从而精确得到液体晃动的自然频率与对应的阻尼比系数,测得晃动频率与理论频率结果吻合良好,表明本文试验识别方法有效。
Abstract
The modal parameters of sloshing fluid are essential for the design of liquid tanks and vibration control. In the modal experiment of fluid sloshing,the modal motions of free liquid surface should be aroused. However the symmetric-mode motions of free surface are difficultly stimulated, therefore the modal parameters (especially for the damping ratios) of the symmetric modes cannot be accurately measured. This paper applied parametric vibration method to excite the two-dimensional (parametric) sloshing in the rectangular, U-shaped and circular tanks. The first four mode motions (including the symmetric-mode motions) of free surface are easily aroused. After stopping the external excitation, a free damped vibration response of a certain mode on the free liquid surface can be obtained, and measured with the laser displacement sensor. The sloshing natural frequencies and the corresponding damping ratios are precisely obtained. The experimental and theoretical frequency results agree well, which verified the validation of present experimental method.
关键词
二维晃动 /
参数振动 /
实验 /
液体 /
模态参数
{{custom_keyword}} /
Key words
two-dimensional sloshing /
parametric vibration /
experiment /
liquid /
modal parameter
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Dodge F T. The New Dynamic Behavior of Liquids in Moving Containers. [R]. San Antonio, TX: Southwest Research Institute,2000.
[2] Ibrahim R A. Liquid sloshing dynamics: theory and applications. [M]. Cambridge: Cambridge University Press,2005.
[3] Faltinsen O M, Timokha A N. Sloshing [M]. Cambridge: Cambridge University Press, 2009.
[4] 夏益霖.液体晃动等效力学模型的参数识别. [J].应用力学学报,1991,8(4):27-35.
Xia Yilin. Parameters estimation for liquid sloshing equivalent mechanical models[J]. Chinese Journal of Applied Mechanics,1991,8(4):27-35.
[5] 丁文镜,曾庆长.晃动液体单摆模型动力学参数的频域辨识. [J].振动工程学报,1992,5(3):211-218.
Ding Wenjing, Zeng Qingchang. Identification in frequency domain for dynamic parameters of pendulum model of sloshing liquid. [J]. Journal of Vibration Engineering,1992,5(3):211-218.
[6] 王为,夏恒新,李俊峰,等. 半球形容器中液体自由晃动非线性现象的实验研究[J].清华大学学报,2008, 48(11):1833-1836.
Wang Wei, Xia Hengxin,Li Junfeng,et al. Experimental investigation on the nonlinear phenomenon of liquid free sloshing in a hemisphere container. [J].Journal of Tsinghua University,2008,48(11):1833-1836.
[7] Hasheminejad SM,Aghabeigi M. Liquid sloshing in half-full horizontal elliptical tanks. Journal of Sound and Vibration,2009,324(1-2), 332-349.
[8] Yuchun Li, Zhuang Wang. An approximate analytical solution of sloshing frequencies for a liquid in various shape aqueducts. [J]. Shock and Vibration,2014, Article ID 672648,7 pages
http://dx.doi.org/10.1155/2014/672648.
[9] 李遇春, 张皓. 二维晃动模态的统一Ritz计算格式[J]. 振动与冲击,2014,33(19):85-89
Li Yuchun, Zhang Hao. A unified Ritz algorithm for two-dimensional slosh modes[J].Journal of Vibration and Shock,2014,33(19): 85-89.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}