高应变率条件下山西黑花岗岩的动态力学性能研究

姜峰1,2,李子沐1,王宁昌1,郭桦1,徐西鹏1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 177-182.

PDF(2048 KB)
PDF(2048 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 177-182.
论文

高应变率条件下山西黑花岗岩的动态力学性能研究

  • 姜峰1,2,李子沐1,王宁昌1,郭桦1,徐西鹏1
作者信息 +

Research on dynamic characteristics of Shanxi black granite under high strain rates

  • JIANG Feng1,2, LI Zi-mu1, LIU Qing-feng1, GUO Hua1, XU Xi-peng1
Author information +
文章历史 +

摘要

采用分离式Hopkinson压杆试验技术,对山西黑花岗岩进行了一系列不同应变率(315.53s-1~1349.87s-1)的动态压缩试验。试验结果表明:山西黑花岗岩在高应变率条件下,动态抗压强度表现出突变特性:应变率从460.09s-1上升到860.20s-1的时候,山西黑花岗岩的动态抗压强度从272.33MPa提高到371.78MPa;在高应变率条件下,山西黑花岗岩材料的破碎机理为在初始冲击波作用区先产生体积破碎,而后在试样后半部分产生赫兹破碎;山西黑花岗岩在高应变率下的弹塑性变形能随应变率的增大而减小,高应变率条件下材料失效和裂纹扩展消耗更多能量,对应更加严重的材料破碎。

Abstract

A series of dynamic compression tests of Shanxi black granite under different strain rates (315.53s-1~1349.87s-1) have been carried out with Split Hopkinson Pressure Bar. Dynamic compressive strength of Shanxi black granite increased from 272.33MPa to 371.78MPa when strain rate increased from 460.09s-1 to 860.20s-1. The fracture mechanism of Shanxi black granite with high strain rates is volume fracture in the initial impact region of the shock wave and Hertzian fracture in the second half of the cylinder sample. The elastic-plastic deformation energy per unit volume of Shanxi black granite decreased with strain rate increasing. Material failure and crack propagation absorb more energy during the impact with higher strain rate, which results in severer fracture of granite material.
 

关键词

岩石动态力学性能 / 山西黑花岗岩 / 分离式Hopkinson压杆 / 高应变率 / 破碎机理

Key words

dynamic property of rock / Shanxi black granite / split Hopkinson pressure bar / high strain rate / fracture mechanism

引用本文

导出引用
姜峰1,2,李子沐1,王宁昌1,郭桦1,徐西鹏1. 高应变率条件下山西黑花岗岩的动态力学性能研究[J]. 振动与冲击, 2016, 35(8): 177-182
JIANG Feng1,2, LI Zi-mu1, LIU Qing-feng1, GUO Hua1, XU Xi-peng1. Research on dynamic characteristics of Shanxi black granite under high strain rates[J]. Journal of Vibration and Shock, 2016, 35(8): 177-182

参考文献

[1] Hopkinson B. A method of measuring the pressure produced in the detonation of high explosive or by the impact of bullets [J]. Philos Trans Roy Soc London Series A , 1914, (213): 127-136.
[2] Kolsky H. An investigation of the mechanical properties of materials very high rates of loading [J].Jounal of Material Processing Technology, 1998, (75): 127-136.
[3] 金解放, 李夕兵, 殷志强, 等. 循环冲击下波阻抗定义岩石损伤变量的研究[J]. 岩土力学, 2011, 32(05): 1385-1394.
[4] 杜晶, 李夕兵, 宫凤强, 等. 岩石冲击试验碎屑分类及其分形特征[J]. 矿业研究与开发, 2010, 30(05): 20-23.
[5] Yuannian Wang, Fulvio Tonon. Dynamic validation of a discrete element code in modeling rock fragmentation[J]. International Journal of Mechanics & Science, 2011, 48: 535-545.
[6] 许金余, 吕晓聪, 张军等. 循环冲击作用下围压对斜长角闪岩动态特性的影响研究[J]. 振动与冲击, 2010, 29(08): 60-63.
[7] 席军, 余勇, 席道瑛. 大理岩对多次冲击波的非线性动态响应.岩石力学与工程学报[J], 2011, 30(增1): 2850-2857.
[8] 许金余, 李卫民, 范飞林, 等. 地质聚合物混凝土的冲击力学性能研究[J]. 振动与冲击, 2009, 28(01): 46-49.
[9] 朱晶晶, 李夕兵, 宫凤强, 等. 冲击载荷作用下砂岩的动力学特性及损伤规律. 中南大学学报(自然科学版)[J], 2012, 43(07): 2701-2707.
[10] 支乐鹏, 许金余, 刘军忠, 等. 基于SHPB试验下两种岩石的动态力学性能研究. 四川建筑科学研究[J], 2012, 38(04): 111-114.
[11] Renliang Shan, Yusheng Jiang, Baoqiang Li. Obtaining dynamic complete stress-strain curves for rock using the Split Hopkinson Pressure Bar technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37: 983-992.
[12] 李刚, 陈正汉, 谢云, 等. 高应变率条件下三峡工程花岗岩动力特性的试验研究. 岩土力学[J], 2007, 28(09): 1833-1840.
[13] 李夕兵,宫凤强,周子龙等. 岩石类材料SHPB实验中的几个关键问题,第六届全国爆炸力学实验技术学术会议论文集,湖南长沙,2010:1-14.
[14] 刘宝昌, 张祖培, 孙友宏, 等. 金刚石绳锯的锯切轨迹及锯切机理研究. 金刚石与磨料磨具工程[J], 2002, 4(132): 17-20.
[15] F. C. Frank, B. R. Lawn. On the theory of Hertzian fracture. Proceedings of the Royal Society, 1967:291-299.
[3] JIN Jiefang, LI Xibing, YIN Zhiqiang, et al. A method for defining rock damage variable by wave impedance under cyclic impact loadings[J].Rock and Soil Mechanics,2011,32(05):1385-1393.
[4]
Du Jing, Li Xibing, Gong Fengqiang, et al. Classification and Fractal Characteristics of the Fragments from Impacting Experiment of Rock[J]. Mining Research and Development ,2010, 30(05): 20-23.
[6]
XU Jin yu , LU Xiao cong, ZHANG Jun , et al. Research on dynamic mechanical performance of amphibol under cyclical impact loading sat different confining pressures[J]. Journal of Vibration and Shock, 2010, 29(08): 60-63.
[7]
XI Jun, YU Yong, XI Daoying. NONLINEAR DYNAMIC RESPONSE OF MARBLE TO REPEATED SHOCK WAVE[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(Z1):2850-2857.
[8]
XU Jinyu, LI Weimin, FAN Feilin, et al. Study on mechanical properties of geopolymeric concrete under impact loading[J].Journal of Vibration and Shock,2009,28(01):46-49.
[9]
ZHU Jingjing , LI Xibing , GONG Fengqiang , et al. Experimental test and damage characteristics of sandstone under uniaxial impact compressive loads[J].Journal of Central South University:Science and Technology,2012,43(07):2701-2707.
[10]
ZHI Lepeng , XU Jinyu , LIU Junzhong , et al. Study on dynamic mechanical properties of two rocks under SHPB experiment[J].Building Science Research of Sichuan,2012,38(04):111-114.
[12]
LI Gang, CHEN Zhenghan, XIE Yun, et al. Test research on dynamic characteristics of Three Gorges granite under high strain rate[J].Rock and Soil Mechanics,2007,28(09):1833-1840.
[14]
LIU Baochang , ZHANG Zupei, SUN Youheng, et al. Reaserch into the Sawing Trajectory and Mechanism of Diamond Wire Saw[J].Diamond & Abrasives Engineering,2002,299(06):17-20.

PDF(2048 KB)

Accesses

Citation

Detail

段落导航
相关文章

/