改进的LMD方法及其在滚动轴承故障诊断中的应用研究

李琳,张永祥,明廷锋

振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 183-186.

PDF(1965 KB)
PDF(1965 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 183-186.
论文

改进的LMD方法及其在滚动轴承故障诊断中的应用研究

  • 李琳,张永祥,明廷锋
作者信息 +

The improved LMD algorithm and its application in bearing fault diagnosis

  • Li Lin,Zhang Yongxiang,Ming Tingfeng
Author information +
文章历史 +

摘要

针对局部均值分解(local mean decomposition, LMD)方法存在的端点效应问题,提出一种基于梯度变化的端点效应抑制方法对局部均值分解进行改进,通过仿真对比不同端点抑制方法的效果,证明了该方法的准确性;针对滚动轴承故障振动信号为一系列调制信号的特点,将改进的局部均值分解方法应用于滚动轴承故障诊断中;利用奇异值分解降噪方法降低噪声污染对分解结果的影响;通过实验验证了该方法在滚动轴承故障诊断中的有效性和可行性。

Abstract

To decrease the error induced by the boundary effect in the process of LMD, a new method is introduced which is based on the grades changing. After comparison with other methods by simulation, this method is proved to be more accurate. As the vibration signal of the faulty rolling element bearing is composed by a series of modulating signal, the improved LMD is applied to the fault diagnosis of bearing. This application, in which the SVD is used for noise reduction, is proved to be effective and feasible by experiment.

关键词

局部均值分解 / 端点效应 / 奇异值分解 / 滚动轴承 / 故障诊断

引用本文

导出引用
李琳,张永祥,明廷锋. 改进的LMD方法及其在滚动轴承故障诊断中的应用研究[J]. 振动与冲击, 2016, 35(8): 183-186
Li Lin,Zhang Yongxiang,Ming Tingfeng. The improved LMD algorithm and its application in bearing fault diagnosis[J]. Journal of Vibration and Shock, 2016, 35(8): 183-186

参考文献

[1] 陈龙.基于时延自相关与局部均值分解的齿轮故障诊断方法的研究[D],华东理工大学硕士学位论文,2003.01
Chen Long. The Research of Gear Fault Diagnosis Based on Delayed Autocorrelation and LMD[D]. East China University of Science and Technology. master’s thesis, 2013.01
[2] 程军圣,杨怡,杨宇. 基于LMD的能量算子解调机械故障诊断方法[J],振动、测试于诊断,2012年12月,Vol.32 No.6: 915-919;
Cheng Junsheng, Yang Yi, Yang Yu. Mechanical Fault Diagnosis of Energy Operator Demodulating Approach Based on LMD[J]. Journal of Vibration, Measurement & Diagnosis, 2012.12,Vol.32 No.6: 915-919;
[3] 宋海军,黄传金,刘宏超,陈铁军,李景丽,罗勇. 基于改进LMD的电能质量扰动检测新方法[J]. 中国电机工程学报, 2014年4月, Vol.34,No.10:1700-1708;
Song Haijun, Huang Chuangjin, Liu Hongchao. A New Power Quality Disturbance Detection Method Based on the Improved LMD[J]. Proceedings of the CSEE, 2014.4, Vol.34,No.10:1700-1708;
[4] 杨武. 基于LMD的AR模型在旋转机械故障诊断中的应用[D]. 大连交通大学硕士学位论文,2013.06.
Yang Wu. AR Model Based LMD Applied for Diagnosising Fault of Rotating Machine[D]. Dalian Jiao Tong University, master’s thesis, 2013.6
[5]Jonathan S Smith,The local mean decomposition method and its application to EEG perception data[J], Journal of the Royal Society Interface, 2005,2(5): 443-454;
[6] 程军圣,罗颂荣,杨斌,杨宇. LMD能量矩和变量预测模型模式识别在轴承故障诊断中的应用[J], 振动工程学报,2013年10月,Vol.26, No.5: 751-757;
Cheng Junsheng, Luo songrong, Yang Bin, Yang Yu. LMD energy moment and variable predictive model based class discriminate and their application in intelligent fault diagnosis of roller bearing[J]. Journal of Vibration Engineering, 2013.10,Vol.26, No.5: 751-757;
[7] 刘树勇,朱石坚,俞翔. 确定相空间重构嵌入维数的研究[J], 哈尔滨工程大学学报, 2008年4月,Vol.29,No.4:374-380;
Liu Shuyong, Zhu shijian, Yu Xiang. Determinating the embedding dimension in phase space reconstruction[J]. Journal of Harbin Engineering University, 2008.4,Vol.29,No.4:374-380;
[8] Luis A. A nonlinear correlation function for selecting the delay time in dynamic reconstructions[J]. Physics Letter A, 1995, 203:88-94.

PDF(1965 KB)

Accesses

Citation

Detail

段落导航
相关文章

/