基于伪随机特征向量的二次修改的结构拓扑重分析

何建军, 陈享姿

振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 207-210.

PDF(1118 KB)
PDF(1118 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 207-210.
论文

基于伪随机特征向量的二次修改的结构拓扑重分析

  • 何建军, 陈享姿
作者信息 +

Structural topology reanalysis for twice continuous modifications based on pseudo-random eigenvector

  • He Jian-jun, Chen Xiang-zi
Author information +
文章历史 +

摘要

研究了连续两次修改的结构动力学拓扑重分析问题。基于我们提出的特征向量伪随机初始化方法,独立和耦合质量正交化处理措施,再结合瑞利-里兹分析法,形成了适用于两次修改的增加自由度的结构拓扑大修改的快速动力学重分析方法。该方法减少了两次直接分析所需要的大量计算量,且操作简单,易于实现。数值算例结果表明,对于这类涉及两次修改的拓扑大修改重分析问题,本文所提的方法是十分有效和高精度的。

Abstract

According to the problem of structural dynamic topological reanalysis for continuous two modifications, a new method for dynamic reanalysis of topological modified structure with added degrees and two continuous modifications was proposed in this paper, which is combined independent mass orthogonalization strategy, the pseudo-random numbers initialization method of eigenvector with Rayleigh-Ritz analysis and. Comparing with the direct finite element analysis, a lots of computational cost can be reduced by this method, which is also easy to operate and implement. The numerical example shows that the proposed method for dynamic topological reanalysis of twice continuous modifications is effective and high- precision.

关键词

连续两次修改;伪随机;动力学拓扑重分析;质量正交化

Key words

twice continuous modifications / dynamic topological reanalysis / pseudo-random / mass orthogonalization /

引用本文

导出引用
何建军, 陈享姿. 基于伪随机特征向量的二次修改的结构拓扑重分析[J]. 振动与冲击, 2016, 35(8): 207-210
He Jian-jun, Chen Xiang-zi. Structural topology reanalysis for twice continuous modifications based on pseudo-random eigenvector[J]. Journal of Vibration and Shock, 2016, 35(8): 207-210

参考文献

[1] Oded Amir a, Ole Sigmund, Boyan S. Lazarov, et al. Efficient reanalysis techniques for robust topology optimization [J]. Comput. Methods Appl. Mech. Engrg., 2012, 245-246: 217-231
[2] Su Huan Chen , Liang Ma, Guang Wei Meng, et al. An efficient method for evaluating the natural frequencies of structures with uncertain-but-bounded parameters [J]. Computers and Structures, 2009, 87: 582-590
[3] A. Kaveh , H. Fazli. Approximate eigensolution of locally modified regular structures using a substructuring technique [J]. Computers and Structures, 2011, 89: 529-537
[4] Liang Ma, Su Huan Chen , Guang Wei Meng. Combined approximation for reanalysis of complex eigenvalues [J]. Computers and Structures, 2009, 87: 502-506
[5] P. Cacciola, G. Muscolino. Reanalysis techniques in stochastic analysis of linear structures under stationary multi-correlated input [J]. Probabilistic Engineering Mechanics, 2011, 26: 92-100
[6] F. Massa, T. Tison, B. Lallemand. Structural modal reanalysis methods using homotopy perturbation and projection techniques [J]. Comput. Methods Appl. Mech. Engrg., 2011, 200: 2971-2982
[7] Mitsuhiro Kashiwagi. A numerical method for eigensolution of locally modified systems based on the inverse power method [J]. Finite Elements in Analysis and Design, 2009, 45: 113-120
[8] 邸娜,陈力奋,王皓. 非亏损系统二次特征值问题的Ritz降阶法[J]. 振动与冲击, 2002, 21(4):80-84
   Na Di, Li fen Chen, Hao Wang. RITZ REDUCED METHOD FOR QUADRATIC EIGENPROBLEMS OF NON-DEFECTIVE SYSTEMS [J]. JOURNAL OF VIBRATION AND SHOCK, 2002, 21(4): 80-84
[9] U. Kirsch. Combined approximations-a general reanalysis approach for structural optimization [J]. Struct Multidisc Optim, 2000, 20: 97-106

PDF(1118 KB)

Accesses

Citation

Detail

段落导航
相关文章

/