[1] 苏祖强, 汤宝平, 姚金宝. 基于敏感特征选择与流形学习维数约简的故障诊断[J]. 振动与冲击, 2014, 33(3): 70-75.
Su Zuqiang, Tang Baoping, Yang Jinbao. Fault diagnosis method based on sensitive feature selection and manifold learning dimension reduction[J]. Journal of Vibration and Shock, 2014, 33(3): 70-75.
[2] 梁胜杰, 张志华, 崔立林, 等. 基于主成分分析与核独立成分分析的降维方法[J]. 系统工程与电子技术, 2011, 33(9): 2144-2148.
Liang Shengjie, Zhang Zhihua, Cui Lilin, et al. Dimensionality reduction method based on PCA and KICA[J]. Systems Engineering and Electronics, 2011, 33(9): 2144-2148.
[3] He Xiaofei, Niyogi P. Locality Preserving Projections[C]// Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2004, 16: 153-160.
[4] 张志伟, 杨帆, 夏克文, 等. 一种有监督LPP算法及其在人脸识别中的应用[J]. 电子与信息学报, 2008, 30(3): 539-541.
Zhang Zhiwei, Yang Fan, Xia Kewen, et al. A supervised LPP algorithm and its application to face recognition[J]. Journal of Electronics & Information Technology, 2008, 30(3): 539-541.
[5] 申中华, 潘永惠, 王士同. 有监督的局部保留投影降维算法[J]. 模式识别与人工智能, 2012, 23(2): 233-239.
Shen Zhonghua, Pan Yonghui, Wang Shitong. A supervised locality preserving projection algorithm for dimensionality reduction[J]. Pattem Recognition and Aitificial Intelligence, 2012, 23(2): 233-239.
[6] 祝磊, 朱善安. KSLPP:新的人脸识别算法[J]. 浙江大学学报(工学版), 2007, 41(7): 1065-1069.
Zhu Lei, Zhu Shanan. KSLPP:new algorithm for face recognition[J]. Journal of Zhejiang University(Engineering Science), 2007, 41(7): 1065-1069.
[7] Jian Cheng, QingShan Liu, Hanqing Lu, et al. Supervised kernel locality preserving projections for face recognition[J].
Neurocomputing, 67(2005): 443–449.
[8] SONGBO T. An effective refinement strategy for KNN text classifier[J]. Expert Systems with Applications, 2006, 30: 290-298.
[9] 李锋, 汤宝平, 陈法法. 基于线性局部切空间排列维数化简的故障诊断[J]. 振动与冲击, 2012, 31(13): 36-40.
Li Feng, Tang Baoping, Chen Fafa. Fault diagnosis model based on dimension reduction using linear local tangent space alignment[J].Journal of Vibration and Shock, 2012, 31(13): 36-40.
[10] D.H. Pandya, S.H. Upadhyay, S.P. Harsha. Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN[J]. Expert Systems with Applications, 40(2013): 4137–4145.
[11] Kononenko I. Estimation attributes: Analysis and extensions of RELIEF[C]// Proceedings of the 1994 European Conference on Machine Learning. Catania: Springer Verlag, 1994: 171-182.
[12] 霍天龙, 赵荣珍, 胡宝权. 基于熵带法与PSO优化的SVM转子故障诊断[J]. 振动、测试与诊断, 2011, 31(3): 279-284.
Huo Tianlong, Zhao Rongzhen, Hu Baoquan. Fault diagnosis for rotor systems based on entropy Band method and support vector machine optimized by PSO[J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(3): 279-284.
[13] 杨艺, 韩德强, 韩崇昭. 基于排序融合的特征选择[J]. 控制与决策, 2011, 26(3): 397-401.
Yang Yi, Han Deqiang, Han Chongzhao. Study on feature selection based on rank-level fusion[J]. Control and Decision, 2011, 26(3): 397-401.
[14] 于达仁, 胡清华, 鲍文. 融合粗糙集和模糊聚类的连续数据知识发现[J]. 中国电机工程学报, 2004, 24(6): 205-210.
Yu Daren, Hu Qinghua, Bao wen. Combining rough set methodolgy and fuzzy clustering for knowledge discovery from quantitative data[J]. Proceedings of the CSEE, 2004, 24(6): 205-210.
[15] 陈法法, 汤宝平, 马婧华, 等. 基于遗传退火优化MSVM的齿轮箱故障诊断[J]. 振动、测试与诊断, 2014, 34(4): 699-704.
Chen Fafa, Tang Baoping, Ma Jinghua, et al. Gearbox Fault diagnosis based on multi-kernel support vector machine optimized by genetic simulated annealing algorithm[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(4): 699-704.