大变形复合材料薄板多体系统动力学建模

张炜华 刘锦阳

振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 27-35.

PDF(2459 KB)
PDF(2459 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 27-35.
论文

大变形复合材料薄板多体系统动力学建模

  • 张炜华 刘锦阳
作者信息 +

Dynamic modeling of composite thin plate multibody system with large deformation

  • ZHANG Wei-hua, LIU Jin-yang
Author information +
文章历史 +

摘要

本文对大变形复合材料薄板的多体系统动力学建模方法进行研究。基于Kirchhoff假设,法线与中面保持垂直,从格林应变的表达式出发,建立了面内应变和曲率与绝对位置坐标和斜率的关系,在此基础上推导了广义弹性力阵和弹性力阵对广义坐标的导数阵,用绝对节点坐标方法建立了大变形复合材料薄板多体系统的动力学方程,用广义法和和牛顿迭代法求解微分-代数混合方程。对外载荷作用下的复合材料薄板进行数值仿真,通过与ANSYS的仿真结果进行对比,验证了本文建模方法的准确性和快速收敛性。最后,将建模方法应用于复合材料太阳帆板展开机构的数值仿真,分析了不同铺层情况下驱动力和约束力的振动特性。

Abstract

In this paper, dynamic modeling theory of composite thin plate multibody system with large deformation is investigated. Based on Kirchhoff assumption that the normal vector is always perpendicular to the central surface, the relation among the in-plane strains, the curvatures, the absolute nodal coordinates and the absolute gradients are derived according to the definition of Green strain, and then the generalized elastic force vector and the differentiation of the elastic force vector with respect to the generalized coordinates are derived. Equations of motion of composite thin plate multibody system with large deformation are derived based on absolute nodal coordinate formulation. Generalized   method and Newton-Raphson method are used for solving the differential-algebraic equations. Simulation of a composite thin plate applied with an external force is carried out. Comparison of the present simulation results with those obtained by ANSYS software verifies the accuracy and effectiveness of the formulation. Finally the proposed formulation is used for numerical simulation of composite solar array deployment mechanism. The vibration characteristics of the driving force and the constraint forces are analyzed in case of different panel layers.

关键词

大变形 / 复合材料薄板 / 动力学 / 空间展开机构

Key words

 large deformation / composite laminated plate / dynamics / deployment mechanism

引用本文

导出引用
张炜华 刘锦阳. 大变形复合材料薄板多体系统动力学建模[J]. 振动与冲击, 2016, 35(8): 27-35
ZHANG Wei-hua, LIU Jin-yang. Dynamic modeling of composite thin plate multibody system with large deformation[J]. Journal of Vibration and Shock, 2016, 35(8): 27-35

参考文献

[1] Likins P W. Finite Element Appendage Equations for Hybrid Coordinate Dynamic Analysis [J]. Journal of Solids and Structures, 1972, 8:790–831.
[2] Berzeri M, Shabana A A. Development of Simple Models for the Elastic Forces in Absolute Nodal Co-ordinate Formulation [J]. Journal of Sound and Vibration, 2000, 235(4):539–565.
[3] Berzeri M, Shabana A A. Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation [J]. Multibody System Dynamics, 2002, 7:357–387.
[4] Omar M A, Shabana A A. A Two-Dimensional Shear Deformation Beam for Large Rotation and Deformation Problems [J]. Journal of Sound and vibration, 2001, 243(3): 565–576.
[5] Dombrowski S V. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates [J]. Multibody System Dynamics, 2002, 8: 409–432.
[6] Dmitrochenko O N, Pogorelov D Yu. Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation [J]. Multibody System Dynamics, 2003, 10:17–43.
[7] 邹凡,刘锦阳.大变形薄板多体系统的动力学建模 [J]. 应用力学学报,2010,27(4):740–745.
Zou Fan, Liu Jin-yang. Dynamic modeling for thin plate multibody system with large deformation [J]. Chinese Journal of Applied Mechanics, 2010, 27(4):740–745.
[8] Mikkola A M, Shabana A A. A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications [J]. Multibody System Dynamics 2003, 9:283–309.
[9] Yoo W S, Lee J H, Park, S J, Sohn, J H, Pogorelov, D, Dmitrochenko, O. Large Deflection Analysis of a Thin Plate: Computer Simulations and Experiments [J]. Multibody System Dynamics, 2004, 11:185–208.
[10] Yoo W S, Kim M S, Mun S H, Sohn J H. Large Displacement of Beam with Base Motion:Flexible Multibody Simulations and Experiments [J]. Computing Methods Applied Mechanical Engineering. 2006, 195:7036–7051.
[11] Yoo W S, Kim M S, Mun S H, Sohn J H. Developments of Multibody System Dynamics:Computer Simulations and Experiments [J]. Multibody System Dynamics, 2007, 18: 35–58.
[12] 刘锦阳,邹凡,余征跃.气浮台-薄板刚-柔耦合系统动力学建模和实验研究 [J]. 振动与冲击,2012,31(21):11-21.
Liu Jin-yang, Zou Fan, Yu Zheng-yue. Dynamic modeling and tests for a hub-plate rigid-flexible coupled system [J]. Chinese Journal of Vibration and Shock, 2012, 31(21):11-21.
[13] 刘铖,田强,胡海岩. 基于绝对节点坐标法的多柔体系统动力学高效计算方法 [J].力学学报,2010,42(2):1197–1205.
Liu Cheng, Tian Qiang, Hu Hai-yan. Efficient Computational Method for Dynamics of Flexible Multibody Systems Based on Absolute Nodal Coordinate [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 45(2):1197–1205.
[14] 赵将,刘铖,田强,胡海岩.黏弹性薄膜太阳帆自旋展开动力学分析 [J].力学学报,2013,45(2):746–754.
Zhao Jiang, Liu Cheng, Tian Qiang, Hu Hai-yan. Dynamic Analysis of Spinning Deployment of a Solar Sail Composed of Viscoelastic Membranes [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):746–754.
[15] Liu C, Tian Q,Hu H Y. Dynamics of a Large Scale Rigid-Flexible Multibody System Composed of Composite Laminated Plates [J]. Multibody System Dynamics, 2011,26(3):283–305.
[16] QATU M S. Vibration of Laminated Shells and Plates [M]. San Diego:Elsevier, 2004:7–12.
 

PDF(2459 KB)

Accesses

Citation

Detail

段落导航
相关文章

/