大跨度斜拉桥Benchmark问题的振动控制研究是当前国际结构控制研讨会的重要议题之一。以美国Bill Emerson Memorial斜拉桥第二阶段Benchmark模型为研究对象,在非线性随机动力学与控制的拟哈密顿理论体系框架下,运用基于随机平均法和随机动态规划原理的非线性随机最优(NSO)控制策略,对地震作用下的Benchmark模型进行MATLAB仿真分析。将最优控制力和性能评价指标与线性二次型Gauss(LQG)控制的计算结果进行对比,得出非线性随机最优控制策略能够更加有效地抑制斜拉桥的地震响应,提高结构的动力稳定性和抗震能力,具有更好的控制效果,对实际桥梁工程的振动控制具有较强的指导意义和适用价值。
Abstract
Investigation of vibration control for benchmark problem on large span cable-stayed bridge has been one of the most important research topics in the current International Symposium on Structural Control. The second stage Benchmark problem on Bill Emerson Memorial cable-stayed bridge in US was studied in this paper. In the frame of Hamiltonian theory for nonlinear stochastic dynamics and control, the benchmark model under seismic excitations was investigated using MATLAB simulation analysis, which is based on the stochastic averaging method and the stochastic dynamic programming principle. By comparison of the analysis results for optimal forces as well as performance evaluation indices between using the nonlinear stochastic optimal (NSO) control strategy and the linear quadratic Gaussian (LQG) control strategy, it came out t that the former control strategy can mitigate the seismic response of the cable-stayed bridge more effectively than that of the latter, thereby enhancing structural dynamic stability and earthquake resistance. In conclusion, the NSO control strategy demonstrates better control effect and presents instructive references and practical significance for vibration control of bridge engineering application.
关键词
非线性随机最优控制 /
地震响应 /
斜拉桥 /
benchmark 模型 /
LQG控制
{{custom_keyword}} /
Key words
NSO control /
seismic response /
cable-stayed bridge /
benchmark model /
LQG control
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Soong T T. State-of-the-art review: Active control in civil engineering [J]. Engineering Structures, 1988, 10(2):74–84.
[2] Housner G W, Bergman L A, Caughey T K, et al. Structural control: Past and present [J]. Journal of Engineering Mechanics, 1997, 123(9):897–971.
[3] Spencer B F, Suhardjo J and Sain M K. Frequency domain optimal control strategies for aseismic protection [J]. Journal of Engineering Mechanics, 1994, 120(1):135–159.
[4] Spencer B F, Timlin T L and Sain M K. Series solution of a class of nonlinear optimal regulators [J]. Journal of Optimization Theory and Applications, 1995, 91(2):321-345.
[5] 欧进萍. 结构振动控制-主动、半主动和智能控制 [M]. 北京: 科学出版社, 2003.
OU Jin-ping. Structural vibration and control-active, semi-active and intelligent control [M]. Beijing: Science press, 2003.
[6] 朱位秋. 非线性随机动力学与控制-Hamilton理论体系框架 [M]. 北京: 科学出版社, 2003.
ZHU Wei-qiu. Nonlinear stochastic dynamics and control-In the frame of Hamilton theory system [M]. Beijing: Science press, 2003.
[7] 朱位秋,应祖光.拟哈密顿系统非线性随机最优控制[J], 力学进展, 2013, 43(1): 39-55.
ZHU Wei-qiu, YING Zu-guang. Advances in research on nonlinear stochastic optimal control of quasi-Hamiltonian systems [J]. Advances in mechanics,2013, 43(1): 39-55.
[8] Zhu W Q,Ying Z G.Optima1 nonlinear feedback control of quasi-Hamiltonian systems [J]. Science in China Series A, 1999, 42(11): 1213-1219.
[9] Zhu W Q, Ying Z G, Soong T T. Optimal nonlinear feedback control of structures under random loading [A]. Spencer B F, Johnson E A. Stochastic structural dynamics [C]. Rotterdam: Balkema, 1998: 141-148.
[10] Zhu W Q, Ying Z G, Soong T T. An optimal nonlinear feedback control strategy for randomly excited structural systems [J]. Nonlinear Dynamics, 2001, 24(I): 31- 51.
[11] Zhu W Q, Ying Z G, Ni Y Q, et a1. Optimal nonlinear stochastic control of hysteretic systems [J].ASCE Journal of Engineering Mechanics, 2000, 126: 1027- 1032.
[12] Zhu W Q, Ying Z G, Nonlinear stochastic optimal control of partially observable linear structures [J]. Engineering Structures, 2002, 24: 333- 342.
[13] Caicedo J M, Dyke S J, Moon S J, et al. Phase II benchmark control problem for seismic response of cable-stayed bridges. 2002. Benchmark Problem Package Available at the World Wide Website: http://.wusceel. cive.wustl.edu/quake.
[14] Dyke S J, Turan G, Caicedo J M, et al. Benchmark control Problem for seismic response of cable-stayed bridge. 2000. Benchmark Problem Package Available at the World Wide Website: http://.wusceel. cive.wustl.edu/quake.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}