基于本征方程求解复合材料梁几何非线性静力平衡

李园园 1,何欢1,陈国平1,刘庞轮1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 60-65.

PDF(1773 KB)
PDF(1773 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 60-65.
论文

基于本征方程求解复合材料梁几何非线性静力平衡

  • 李园园 1 ,何欢1,陈国平1,刘庞轮1
作者信息 +

geometric nonlinear static equilibria of composite beams using intrinsic formulation

  • LI Yuanyuan1  HE Huan1   CHEN Guoping1  LIU Panglun1
Author information +
文章历史 +

摘要

对基于本征梁理论求解复合材料梁的几何非线性大变形屈曲问题进行了研究,根据材料属性利用渐近变分法确定复合材料梁的刚度矩阵,再根据本构方程和平衡方程求得其静力学行为,结果表明:对单层铺层的复合材料梁来说,刚度矩阵的耦合项可以忽略,其变形构型及梁末端的位移及转角的变化趋势与各项同性材料相同;对一个一般的复合材料梁来说,其刚度矩阵的耦合项不可忽略,耦合项对位移和转角的影响与施加在梁上的载荷大小有关,在载荷小于30N,以耦合项50%的变化量为界,当变化量小于50%时,位移和转角的变化趋势与初始时相同,当变化量大于50%时,位移和转角的变化趋势发生很大的改变,但与解耦后的变化趋势相似。

Abstract

Based on the intrinsic beam theory,this paper solved the large deformation buckling problem of geometric nonlinear composite beam. Using the asymptotic variational method, we can get the stiffness matrix of the composite beam in the light of material properties, and then the static behavior of composite beam can be obtained through the balance equation and constitutive equation. The results showed that: If the composite beam has a single layer, the coupling terms of the stiffness matrix can be ignored and the trends of the deformation configuration, normalized displacements and rotations of the beam end are the same with the isotropic material beams. But for a general composite beam, the coupling terms of its stiffness matrix can not be ignored and the impact of coupling term on displacement and rotation change regularly according to load. When the load is less than 30N, and the coupling term changes the amount of 50%, if the amount of change less than 50%, the displacement and rotation are the same with the initial trends, however, if the change is greater than 50%, they will undergone great changes. But similar to the trends decoupled.
 

关键词

本征梁理论 / 复合材料梁 / 渐近变分法 / 几何非线性 / 大变形 / 屈曲

Key words

Intrinsic beam theory / Composite beam / Variational asymptotic method / Geometric nonlinearity;Large deformation / Buckling

引用本文

导出引用
李园园 1,何欢1,陈国平1,刘庞轮1. 基于本征方程求解复合材料梁几何非线性静力平衡[J]. 振动与冲击, 2016, 35(8): 60-65
LI Yuanyuan1 HE Huan1 CHEN Guoping1 LIU Panglun1. geometric nonlinear static equilibria of composite beams using intrinsic formulation[J]. Journal of Vibration and Shock, 2016, 35(8): 60-65

参考文献

[1]Christensen E R, Lee S W. Nonlinear finite element modeling of the dynamics of unrestrained flexible structures[J]. Computers and Structures, 1986, 23(4): 819-829.
[2] Belytschko T, Hsieh B. Nonlinear transient finite element analysis with convected coordinates[J]. International Journal for Numerical Methods in Engineering, 1973, 26(2):255-271.
[3] Boutaghou Z E, Erdman A G, Stolarski H K. Dynamics of flexible beams and plates in large overall motion[J]. ASME Journal of Applied Mechanics, 1992, 59(4):991-999.
[4] Hodges D. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams[J]. AIAA Journal, 2003, 41 (6): 1131-1137.
[5] Gatti-Bono C, Perkins N. Physical and numerical modeling of the dynamic behavior of a fly line[J]. Journal of Sound and Vibration, 2002, 255 (3): 555-577.
[6] 冯志华. 大范围运动柔性梁非线性动力学[D]. 南京:南京航空航天大学, 2002.
    Feng Zhihua. nonliner dynamics of flexible beams undergoing a large overall motion[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2002.
[7] 齐朝晖. 大变形梁的动力学公式及本构关系[J]. 吉林工业大学学报, 1994, 24(73): 24-29.
Qi Zhaohui. Kinetic equations and constitutive relations of large deformation beam[J]. the Journal of Jilin University of Technology, 1994, 24(73): 24-29. 
[8] Roberts S. Shipman J. Two-point boundary value problems: Shooting Methods[C], 1972. Elsevier.
[9] Shvartsman B. Direct method for analysis of flexible beam under a follower load[J]. Proceedings of Computational Mechanics for the Next Millennium , 1999: 155-160.
[10] Shvartsman B. Large deflections of a cantilever beam subjected to a follower force[J]. Journal of Sound and Vibration , 2007, 304 (3): 969-973.
[11] Shvartsman B. Direct method for analysis of flexible cantilever beam subjected to two follower forces[J]. International Journal of Non-Linear Mechanics, 2009, 44 (2): 249-252.
[12] Karlson K N, Leamy M J. Three-dimensional equilibria of nonlinear pre-curved beams using an intrinsic formulation and shooting[J]. International Journal of Solids and Structures, 2013, 50: 3491-3504.
[13] Hodges D H. Nonlinear composite beam theory[M]. AIAA, Reston, VA, 2006.
[14] Yu W, Hodges D H, Volovoi V V, and Cesnik C E S. On timoshenko-like modeling of initially curved and twisted composite beams[J]. International Journal of Solids and Structures, 2002, 39(19): 5101–5121.
[15] Yu W, Hodges D H. Generalized timoshenko theory of the variational asymptotic beam sectional analysis[J]. Journal of the American Helicopter Society, 2005, 50 (1): 46-55.
[16] Wenbin Yu, Hodges D H, Volovoi V V , Cesnik C. On timoshenko-like modeling of initially curved and twisted composite beams[J]. International Journal of Solids and Structures , 2002, 39: 5101–5121.
[17] Hodges D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures, 1990, 26(11): 1253– 1273.
[18]Leamy M. Intrinsic finite element modeling of nonlinear dynamic response in helical springs[J]. Journal of Computational and Nonlinear Dynamics 7, 2012, 031007(9 p).
[19] Cesnik C E S, Hodges D H. VABS: A new concept for composite rotor blade cross-sectional modeling[J]. Journal of the American Helicopter Society, 1997, 42(1): 27 – 38.
[20] Kovvali R, Hodges D H. Verification of variational asymptotic sectional analysis for initially curved and twisted beams [J]. Journal of Aircraft, 2012, 49(3): 861 – 869.
[21] Popescu B, Hodges D H. On asymptotically correct Timoshenko-like anisotropic beam theory [J]. International Journal of Solids and Structures, 2000, 37: 535 – 558.
 

PDF(1773 KB)

Accesses

Citation

Detail

段落导航
相关文章

/