[1]Christensen E R, Lee S W. Nonlinear finite element modeling of the dynamics of unrestrained flexible structures[J]. Computers and Structures, 1986, 23(4): 819-829.
[2] Belytschko T, Hsieh B. Nonlinear transient finite element analysis with convected coordinates[J]. International Journal for Numerical Methods in Engineering, 1973, 26(2):255-271.
[3] Boutaghou Z E, Erdman A G, Stolarski H K. Dynamics of flexible beams and plates in large overall motion[J]. ASME Journal of Applied Mechanics, 1992, 59(4):991-999.
[4] Hodges D. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams[J]. AIAA Journal, 2003, 41 (6): 1131-1137.
[5] Gatti-Bono C, Perkins N. Physical and numerical modeling of the dynamic behavior of a fly line[J]. Journal of Sound and Vibration, 2002, 255 (3): 555-577.
[6] 冯志华. 大范围运动柔性梁非线性动力学[D]. 南京:南京航空航天大学, 2002.
Feng Zhihua. nonliner dynamics of flexible beams undergoing a large overall motion[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2002.
[7] 齐朝晖. 大变形梁的动力学公式及本构关系[J]. 吉林工业大学学报, 1994, 24(73): 24-29.
Qi Zhaohui. Kinetic equations and constitutive relations of large deformation beam[J]. the Journal of Jilin University of Technology, 1994, 24(73): 24-29.
[8] Roberts S. Shipman J. Two-point boundary value problems: Shooting Methods[C], 1972. Elsevier.
[9] Shvartsman B. Direct method for analysis of flexible beam under a follower load[J]. Proceedings of Computational Mechanics for the Next Millennium , 1999: 155-160.
[10] Shvartsman B. Large deflections of a cantilever beam subjected to a follower force[J]. Journal of Sound and Vibration , 2007, 304 (3): 969-973.
[11] Shvartsman B. Direct method for analysis of flexible cantilever beam subjected to two follower forces[J]. International Journal of Non-Linear Mechanics, 2009, 44 (2): 249-252.
[12] Karlson K N, Leamy M J. Three-dimensional equilibria of nonlinear pre-curved beams using an intrinsic formulation and shooting[J]. International Journal of Solids and Structures, 2013, 50: 3491-3504.
[13] Hodges D H. Nonlinear composite beam theory[M]. AIAA, Reston, VA, 2006.
[14] Yu W, Hodges D H, Volovoi V V, and Cesnik C E S. On timoshenko-like modeling of initially curved and twisted composite beams[J]. International Journal of Solids and Structures, 2002, 39(19): 5101–5121.
[15] Yu W, Hodges D H. Generalized timoshenko theory of the variational asymptotic beam sectional analysis[J]. Journal of the American Helicopter Society, 2005, 50 (1): 46-55.
[16] Wenbin Yu, Hodges D H, Volovoi V V , Cesnik C. On timoshenko-like modeling of initially curved and twisted composite beams[J]. International Journal of Solids and Structures , 2002, 39: 5101–5121.
[17] Hodges D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures, 1990, 26(11): 1253– 1273.
[18]Leamy M. Intrinsic finite element modeling of nonlinear dynamic response in helical springs[J]. Journal of Computational and Nonlinear Dynamics 7, 2012, 031007(9 p).
[19] Cesnik C E S, Hodges D H. VABS: A new concept for composite rotor blade cross-sectional modeling[J]. Journal of the American Helicopter Society, 1997, 42(1): 27 – 38.
[20] Kovvali R, Hodges D H. Verification of variational asymptotic sectional analysis for initially curved and twisted beams [J]. Journal of Aircraft, 2012, 49(3): 861 – 869.
[21] Popescu B, Hodges D H. On asymptotically correct Timoshenko-like anisotropic beam theory [J]. International Journal of Solids and Structures, 2000, 37: 535 – 558.