[1] Reddyhoff T, Dwyer-Joyce R S, Harper P. A new approach for the measurement of film thickness in liquid face seals[J]. Tribology Transactions, 2008, 51(2): 140-149.
[2] Astridge D G, Longfield M D. Paper 11: Capacitance Measurements and Oil Film Thickness in a Large-Radius Disc and Ring Machine[C]//Proceedings of the Institution of Mechanical Engineers, Conference Proceedings. SAGE Publications, 1967, 182(14): 89-96.
[3] El-Sisi S I, Shawki G S A. Measurement of oil-film thickness between disks by electrical conductivity[J]. Journal of Fluids Engineering, 1960, 82(1): 12-16.
[4] Etsion I, Constantinescu I. Experimental observation of the dynamic behavior of noncontacting coned-face mechanical seals[J]. ASLE transactions, 1984, 27(3): 263-270.
[5] Anderson W B, Jarzynski J, Salant R F. A condition monitor for liquid lubricated mechanical seals[J]. Tribology transactions, 2001, 44(3): 479-483.
[6] Reddyhoff T, Dwyer-Joyce R, Harper P. Ultrasonic measurement of film thickness in mechanical seals[J]. Sealing Technology, 2006, 2006(7): 7-11.
[7] Williams M, Barnes N D. The use of acoustic emissions for monitoring mechanical seals[C]//13th BPMA Pump Technical Conference. 1993.
[8] Miettinen J, Siekkinen V. Acoustic emission in monitoring sliding contact behaviour[J]. Wear, 1995, 181: 897-900.
[9] 高志,林尤滨,黄伟峰,等. 干气密封启动过程中的声发射 信号特征[J]. 清华大学学报(自然科学版),2013, 53(3): 319-322.
GAO Zhi, LIN You-bin, HUANG Wei-feng, et al. Acoustic emission characteristics of dry gas seals during startup[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(3): 319-322.
[10] ZHANG Er-qing, FU Pan, GE Zhen-di, et al. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology[J]. Sensors & Transducers, 2014, 172(6): 139-146.
[11] 李晓晖,傅攀,张智. 基于声发射技术的机械密封膜厚测量[J]. 四川大学学报(工程科学版),2014, 46(6): 198-204
LI Xiao-hui, FU Pan, ZHANG Zhi. Measurement of film thickness in mechanical seals based on AE technology[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(6): 198-204.
[12] Kotecha J H, Djurić P M. Gaussian particle filtering[J]. Signal Processing, IEEE Transactions on, 2003, 51(10): 2592-2601.
[13] 梁军. 粒子滤波算法及其应用研究[D]. 哈尔滨:哈尔滨工业大学,2009.
LIANG Jun. Research on particle filter algorithm and its application[D]. Haerbin: Haerbin Institute and Technology, 2009.
[14] 杨超,王志伟. 基于Elman神经网络的滚动轴承故障诊断方法[J]. 轴承,2010(5): 49-52.
YANG Chao, WANG Zhi-wei. Fault diagnosis method of rolling bearings based on Elman neural network[J]. Bearing, 2010(5): 49-52.
[15] 张德丰,等. MATLAB 神经网络应用设计[M]. 北京:机械工业出版社, 2009.
ZHANG De-feng, et al. Neural network practical design in MATLAB [M]. Beijing: China Machine Press, 2009.
[16] 从飞云,陈进,董广明. 基于滚动轴承故障诊断的AR预测滤波器阶数问题研究[J]. 振动与冲击,2012, 31(4): 44-47.
CONG Fei-yun, CHEN Jin, DONG Guang-ming. Order selection of AR predicting filter for rolling bearing diagnosis[J]. Journal of Vibration and Shock, 2012, 31(4): 44-47.
[17] 王朝勇. 支持向量机若干算法研究及应用[D]. 吉林:吉林大学,2008.
WANG Zhao-yong. Study on some support vector machine algorithms and their applications [D]. Jilin: Jilin University, 2008.
[18] 陈昌,汤宝平,吕中亮. 基于威布尔分布及最小二乘支持向量机的滚动轴承退化趋势预测[J]. 振动与冲击,2014, 33(20): 52-56.
CHEN Chang, TANG Bao-ping, LV Zhong-liang. Degradation trend prediction of rolling bearings based on Weibull distribution and least squares support vector machine[J]. Journal of Vibration and Shock, 2014, 33(20): 52-56.
[19] 郭新辰. 最小二乘支持向量机算法及应用研究[D]. 吉林:吉林大学,2008.
GUO Xin-chen. Study on least square support vector machine algorithms and their applications [D]. Jilin: Jilin University, 2008.