机械密封端面接触状态的声发射监测研究

李晓晖1,傅攀1,曹伟青1,陈侃2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 83-89.

PDF(1798 KB)
PDF(1798 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 83-89.
论文

机械密封端面接触状态的声发射监测研究

  • 李晓晖1,傅攀1,曹伟青1,陈侃2
作者信息 +

The study of acoustic emission monitoring for contact state of seal end faces

  • Li Xiao-hui 1   Fu Pan 1  Cao Wei-qing 1   Chen Kan 2
Author information +
文章历史 +

摘要

有效监测机械密封的端面接触状态有助于对密封失效做出早期预警。针对密封声发射信号难以降噪的问题,提出基于神经网络粒子滤波和最小二乘支持向量机的声发射建模方法。首先通过机械密封的端面膜厚测量,研究声发射能量在密封启动过程中的变化规律;接着利用人工神经网络构建信号的状态空间,再通过粒子滤波算法对状态空间滤波降噪;最后从滤波信号中提取特征,并利用最小二乘支持向量机构建机械密封端面接触状态的检测模型。实验数据证明该方法能有效实现机械密封端面状态的无损检测,具有良好的工业前景。

Abstract

Monitoring the contact state of seal end faces would help to the early warning of the seal failure. For the problem of the difficulty in seal signal denoising, a new approach based on particle filter with artificial neural network (ANN-PF) and least square support vector machine (LS-SVM) is presented for acoustic emission (AE) modeling. Following the measurement of seal film thickness, variations of the AE energy during the seal startup are studied first. Then Elman ANN is used to build the dynamic state space (DSS) of the AE signal and PF is used for signal filtering. Finally, multiple features are extracted and a classification model based on LS-SVM is constructed for state monitoring. Experimental data shows that the proposed method can detect the seal face contact effectively and non-destructively, and has a wide industrial prospect.
 

 

关键词

密封端面接触 / 声发射 / 粒子滤波 / 状态监测 / 最小二乘支持向量机

Key words

seal face contact / acoustic emission / particle filter / state monitoring / least square support vector machine

引用本文

导出引用
李晓晖1,傅攀1,曹伟青1,陈侃2. 机械密封端面接触状态的声发射监测研究[J]. 振动与冲击, 2016, 35(8): 83-89
Li Xiao-hui 1 Fu Pan 1 Cao Wei-qing 1 Chen Kan 2 . The study of acoustic emission monitoring for contact state of seal end faces[J]. Journal of Vibration and Shock, 2016, 35(8): 83-89

参考文献

[1] Reddyhoff T, Dwyer-Joyce R S, Harper P. A new approach for     the measurement of film thickness in liquid face seals[J]. Tribology Transactions, 2008, 51(2): 140-149.
[2] Astridge D G, Longfield M D. Paper 11: Capacitance Measurements and Oil Film Thickness in a Large-Radius Disc and Ring Machine[C]//Proceedings of the Institution of Mechanical Engineers, Conference Proceedings. SAGE Publications, 1967, 182(14): 89-96.
[3] El-Sisi S I, Shawki G S A. Measurement of oil-film thickness between disks by electrical conductivity[J]. Journal of Fluids Engineering, 1960, 82(1): 12-16.
[4] Etsion I, Constantinescu I. Experimental observation of the dynamic behavior of noncontacting coned-face mechanical seals[J]. ASLE transactions, 1984, 27(3): 263-270.
[5] Anderson W B, Jarzynski J, Salant R F. A condition monitor for liquid lubricated mechanical seals[J]. Tribology transactions, 2001, 44(3): 479-483.
[6] Reddyhoff T, Dwyer-Joyce R, Harper P. Ultrasonic measurement of film thickness in mechanical seals[J]. Sealing Technology, 2006, 2006(7): 7-11.
[7] Williams M, Barnes N D. The use of acoustic emissions for monitoring mechanical seals[C]//13th BPMA Pump Technical Conference. 1993.
[8] Miettinen J, Siekkinen V. Acoustic emission in monitoring sliding contact behaviour[J]. Wear, 1995, 181: 897-900.
[9] 高志,林尤滨,黄伟峰,等. 干气密封启动过程中的声发射 信号特征[J]. 清华大学学报(自然科学版),2013, 53(3): 319-322.
   GAO Zhi, LIN You-bin, HUANG Wei-feng, et al. Acoustic emission characteristics of dry gas seals during startup[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(3): 319-322.
[10] ZHANG Er-qing, FU Pan, GE Zhen-di, et al. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology[J]. Sensors & Transducers, 2014, 172(6): 139-146.
[11] 李晓晖,傅攀,张智. 基于声发射技术的机械密封膜厚测量[J]. 四川大学学报(工程科学版),2014, 46(6): 198-204
    LI Xiao-hui, FU Pan, ZHANG Zhi. Measurement of film thickness in mechanical seals based on AE technology[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(6): 198-204.
[12] Kotecha J H, Djurić P M. Gaussian particle filtering[J]. Signal Processing, IEEE Transactions on, 2003, 51(10): 2592-2601.
[13] 梁军. 粒子滤波算法及其应用研究[D]. 哈尔滨:哈尔滨工业大学,2009.
    LIANG Jun. Research on particle filter algorithm and its application[D]. Haerbin: Haerbin Institute and Technology, 2009.
[14] 杨超,王志伟. 基于Elman神经网络的滚动轴承故障诊断方法[J]. 轴承,2010(5): 49-52.
    YANG Chao, WANG Zhi-wei. Fault diagnosis method of rolling bearings based on Elman neural network[J]. Bearing, 2010(5): 49-52.
[15] 张德丰,等. MATLAB 神经网络应用设计[M]. 北京:机械工业出版社, 2009.
    ZHANG De-feng, et al. Neural network practical design in MATLAB [M]. Beijing: China Machine Press, 2009.
[16] 从飞云,陈进,董广明. 基于滚动轴承故障诊断的AR预测滤波器阶数问题研究[J]. 振动与冲击,2012, 31(4): 44-47.
    CONG Fei-yun, CHEN Jin, DONG Guang-ming. Order selection of AR predicting filter for rolling bearing diagnosis[J]. Journal of Vibration and Shock, 2012, 31(4): 44-47.
[17] 王朝勇. 支持向量机若干算法研究及应用[D]. 吉林:吉林大学,2008.
    WANG Zhao-yong. Study on some support vector machine algorithms and their applications [D]. Jilin: Jilin University, 2008.
[18] 陈昌,汤宝平,吕中亮. 基于威布尔分布及最小二乘支持向量机的滚动轴承退化趋势预测[J]. 振动与冲击,2014, 33(20): 52-56.
    CHEN Chang, TANG Bao-ping, LV Zhong-liang. Degradation trend prediction of rolling bearings based on Weibull distribution and least squares support vector machine[J]. Journal of Vibration and Shock, 2014, 33(20): 52-56.
[19] 郭新辰. 最小二乘支持向量机算法及应用研究[D]. 吉林:吉林大学,2008.
    GUO Xin-chen. Study on least square support vector machine algorithms and their applications [D]. Jilin: Jilin University, 2008.
 

PDF(1798 KB)

Accesses

Citation

Detail

段落导航
相关文章

/