微磨削与超声振动复合加工技术研究现状与展望

张建华,田富强,张明路,赵岩

振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 97-109.

PDF(2488 KB)
PDF(2488 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (8) : 97-109.
论文

微磨削与超声振动复合加工技术研究现状与展望

  • 张建华,田富强,张明路,赵岩
作者信息 +

Review of Studies on Micro-grinding and Ultrasonic Assisted Machining

  • ZHANG Jian-hua, TIAN Fu-qiang, ZHANG Ming-lu, ZHAO Yan
Author information +
文章历史 +

摘要

微细切削技术是传统加工工艺向微观尺度的延伸,在微加工领域具有重要的作用,尤其适用于三维零件及微结构的加工。与其他微细切削技术相比,微细磨削技术具有加工零件棱边精度高、适于硬脆性材料加工等优势,但其存在加工效率低、磨削热量大、微砂轮易磨损等缺陷。已有研究表明,于机械加工辅加超声振动的复合加工技术可有效降低切削力、切削温度,增大脆性材料脆-塑转变临界切削深度,改善加工表面质量等。因而超声振动辅助微磨削技术被认为是一种可有效解决微磨削加工现存缺陷的技术。主要从微磨削技术研究现状、尺寸效应机理研究、脆性材料塑性域去除机理研究、超声振动切削实验研究、超声振动切削断续切削机理研究及微磨削动态有效磨刃密度建模研究六个方面,对微磨削技术及超声振动辅助切削技术相关领域研究进行综述,并探讨超声振动辅助微细磨削技术加工机理研究及未来发展需注重解决的问题。

Abstract

As an extension of traditional machining to micro-scale processing, micro-machining technology occupies an important role in micro-manufacturing field, particularly in processing of three-dimensional parts and micro-structures. Compared with other micro-machining technology, micro-grinding technology shows advantage by high edge-machining precision, adaptability for processing of hard and brittle materials and so on. But it is characterized by defects of low processing efficiency, grinding heat, easy wear of the wheel. Previous studies show that ultrasonic vibration assisted machining can effectively reduce the cutting force and cutting heats, enlarge the critical cutting depth of brittle-ductile transition, and improve the surface quality. Ultrasonic vibration assisted micro-grinding technology is considered to be able to solve the problems of micro-grinding. In the present paper, studies in the related fields of micro-grinding technology and ultrasonic vibration assisted machining technology are reviewed mainly from the aspects of researches on micro-grinding technology, brittle-ductile transition, size effect, experimental studies on ultrasonic vibration assisted machining, interrupted cutting , dynamic cutting edge density and outlook for further study and future developments. 
 
 

关键词

微磨削 / 超声振动 / 塑性域去除 / 尺寸效应 / 断续切削;有效磨刃密度

Key words

Micro-grinding / Ultrasonic vibration / Brittle-ductile transition / Size effect / Interrupted cutting / Cutting edge density

引用本文

导出引用
张建华,田富强,张明路,赵岩. 微磨削与超声振动复合加工技术研究现状与展望[J]. 振动与冲击, 2016, 35(8): 97-109
ZHANG Jian-hua, TIAN Fu-qiang, ZHANG Ming-lu, ZHAO Yan. Review of Studies on Micro-grinding and Ultrasonic Assisted Machining[J]. Journal of Vibration and Shock, 2016, 35(8): 97-109

参考文献

[1]. 李伯民, 赵波. 现代磨削技术[M].北京:机械工业出版社,2003.
Li Bo-min, Zhao Bo, Modern grinding technology [M], Beijing: China Machine Press, 2003.
[2]. R. Harlou, D.G. Pearson, G.M. Nowell, et al. Combined Sr isotope and trace element analysis of melt inclusions at sub-ng levels using micro-milling [J]. Chemical Geology, 2009, 260(3-4): 254-268.
[3]. D. Dornfeld, S. Min, Y. Takeuchi. Recent advances in mechanical micro-machining [J]. CIRP Annals-Manufacturing Technology, 2006, 55(2):745-768.
[4]. Park. H.W. Development of micro-grinding mechanics and machine tools [D], Atlanta: Georgia Institute of Technology, 2008.
[5]. [日]隈部淳一郎著, 韩一昆, 薛万夫等译. 精密加工振动切削(基础与应用)[M].北京:机械工业出版社, 1982: 65-73.
Kumabe Junichiro, Precision machiningand vibration assisted cutting (base and application), China Machine PRESS, Beijing, 1982.
[6]. Taghi Tawakoli, Bahman Azarhoushang, Mohammad Rabiey. Ultrasonic assisted dry grinding of 42CrMo4 [J]. The International Journal of Advanced Manufacturing Technology, 2009, 42(9-10):883-891.
[7]. Javad Akbari, Hassan Borzoie, Mohammad Hossein Mamduhi. Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3) [J].World Academy of Science, Engineering and Technology, 2008, 2(5): 785-789.
[8]. D.E. Brehl, T.A. Dow. Review of vibration-assisted machining [J]. Precision Engineering, 2008, 32(3):153–172.
[9]. Jian Hua Zhang, Yan Zhao , Shuo Zhang, et al. Kinematic Analysis of Ultrasonic Vibration Assisted Micro End Grinding[C]. Key Engineering Materials, 2014,609-610:1357-1361
[10]. Zhang Jianhua, Zhao Yan, Zhang Shuo, et al. Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass [J]. Shock and Vibration, 2014 (2014), Article ID 418059.
[11]. E. Brinksmeier, Y. Mutlugünes, F. Klocke, et al. Ultra-precision grinding [J].CIRP Annals-Manufacturing Technology, 2010, 59(2):652-671.
[12] Jan. Gäbler, Lothar Schäfer, Bernd Menze, et al. Micro abrasive pencils with CVD diamond coating [J]. Diamond and Related Materials, 2004, 2(3-7): 707-710.
[13]. Haefeli R. Anwendungsmo¨ glichkeiten von Schleifstiften[J]. Industrial Diamond Review, 1997, 2(97):164–168.
[14]. Aurich JC, Engmann J, Schueler G, et al. Micro Grinding Tool for Manufacture of Complex Structures in Brittle Materials[J]. CIRP Annals-Manufacturing Technology, 2009, 58(1):311–314
[15]. Aurich JC, Schüler GM, Engmann J. Komplexe Mikrostrukturierung von Hartmetall mit 20 μm Mikroschleifstiften [J]. Diamond Business, 2009, 22–27.
[16]. Hoffmeister HW, Hlavac M. Grinding of Microstructures in Hardened Steel with CBN Tools[c]. Proceedings of the 17th Annual Meeting of the ASPE, 2002, 27, 490–494.
[17]. Hoffmeister HW, Wenda A. Investigations into the Micro-grinding Technique for the Production of microstructures in Silicon and Glass Micro System Technologies [c]. Mechanical Systems and Components, 1998, 433–438.
[18] Hoffmeister HW, Wittmer R. Grinding hard and brittle materials with cvd-diamond microgrinding wheels [J].  Proceedings of the 17th Annual Meeting of the ASPE, St. Louis: 2009:490–494.
[19]. Suzuki H, Higuchi T, Nishioka M, et al. Precision Grinding of Micro Fresnel Shape and Precision Glass Molding of Micro Fresnel Lens. Proceedings of the 16th Annual Meeting of the ASPE, Crystal City: Elsevier Science Ltd, 2001:437–440.
[20]. 温雪龙, 巩亚东, 程军, et al. 钠钙玻璃微磨削表面粗糙度试验研究[J]. 中国机械工程, 2014, 25(3): 290-294.
Wen Xuelong, Gong Yadong, Cheng Jun, et al, Experimental Study on Surface Roughness in Micro-grinding of Soda-lime Glass [J], China Mechanical Engineering, 2014, 25(3): 290-294.
[21]. 程军, 巩亚东, 武治政, et al. 硬脆材料微磨削表面形成机理试验研究 [J]. 机械工程学报, 2012, 48(21): 190-198.
Cheng Jun, Gong Ya-dong, Wu Zhi-zheng, Experimental Study on Mechanism of Surface Formation for Micro-grinding of Hard Brittle Material [J], Journal of mechanical engineering, 2012, 48(21): 190-198.
 [22]. 谢晋, 李萍, 吴可可, et al. 微结构表面精密磨削技术及其功能特性开发[J].机 械 工 程 学 报, 2013, 49 (23): 182-190.
Xie Jin, Li Ping, Wu Keke, et al. Micro and Precision Grinding Technique and Functional Behavior Development of Micro-structured Surfaces [J], Journal of mechanical engineering, 2013, 49 (23): 182-190.
[23]. Yuichi Okazaki, Nozomu Mishima and Kiwamu Ashida. Micro-factory—Concept, History, and Developments, Journal of Manufacturing Science and Engineering,  2005, 126(4), 837-844
[24]. Kitahara T, Ashida K, Tanaka M, et al. Microfactory and microlathe [C]. Proc. of international Workshop on Micro-factories, Japan, 1998:1-8.
[25]. Ogawa, H. Indispensable Technologies for Micro-assembly [C], Proc. 2nd International Workshop on Microfactories, 2000:103–106.
[26] Vogler M P , Liu X , Kappor S G , et al. Development of meso-scale machine tool (mMT) systems [J] . Tech Pap Soc Manu-factoring Eng, MS: 2002, 181: 1-9.
[27] Bang Y B, Lee K M. 5-axis micro milling machine for machining micro parts [J]. Int J Adv Manuf Technol, 2004, 25 (9-10): 888-894.
[28]. 赵岩, 梁迎春, 白清顺, et al. 微细加工中的微型铣床、微刀具磨损及切削力的实验研究 [J]. 光学精密工程, 2007, 894-902.
Zhao Yan, Liang Ying-chun, Bai Qing-shun, et al. Micro milling machine tool, micor tool wear and cutting forces in micro-machining [J], Opticas and precision engineering, 2007, 894-902.
 [29]. Backer. W. R, Marshall. E. R, M. C. Shaw. Size effect in metal cutting [J], Transactions of the ASME, 1952, 74(1):61-71.
[30]. Furukawa. Y, Moronuki. N, Effect of material properties on ultra precise cutting processes [J]. CIRP Annals-Manufacturing Technology, 1988, 37(1), 113–116.
[31]. Liu. K, S N. Melkote. Material strengthening mechanisms and their contribution to size effect in micro-cutting [J].Journal of Manufacturing Science and Engineering, 2005, 128(3): 730-738.
[32]. D. Buryta, R. Sowerby, I. Yellowley. Stress distributions on the rake face during orthogonal machining [J]. International Journal of Machine Tools and Manufacture, 1994, 34(5): 721-739.
[33]. D. Buryta. Stress distributions on the rake face of a cutting tool during orthogonal machining [D]. Hamilton: McMaster University, 1993.
[34]. P.W. Wallace, G. Boothroyd, Tool forces and tool--chip friction in orthogonal machining [J]. Journal of Mechanical Engineering Science, 1964, 6(1): 74-87.
[35]. R.N. Roth, P.L.B. Oxley. A slipline field analysis for orthogonal machining based on experimental flow fields [J]. Journal of Mechanical Engineering Science, 1972, 14(2): 85-97.
[36]. Shaw. M. C. A quantized theory of strain hardening as applied to cutting of metals [J]. Journal of Applied Physics, 1950, 21(6): 599–606.
[37]. Kopalinsky. E. M, Oxley. P. L. B. Size effects in metal removal process [J]. Mechanical Properties at High Rates of Strain, 1984, 1984: 389–396.
[38]. Larsen-Basse. J, Oxley, P. L. B. Effect of strain-rate sensitivity on scale phenomenon in chip formation [C]. Birmingham: Springer, 1973:209–216.
[39]. Joshi. S. S, Melkote. S. N, An explanation for the size-effect in machining using strain gradient plasticity [J]. Manufacturing Science and Engineering, 2004, 126 (4), 679–684.
[40]. Komanduri. R, Chandrasekaran. N, Raff. L. M. Effect of tool geometry in nano-metric cutting: a molecular dynamics simulation approach. Wear, 1998, 219(1):84–97.
[41]. Liu. C. R, Barash. M. M. The mechanical state of the sub-layer of a surface generated by chip-removal process, Part I: Cutting with a sharp tool [J]. Journal of Manufacturing Science and Engineering, 1976, 98 (4): 1192-1199.
[42]. Muhammad Arif, Zhang Xinquan, Mustafizur Rahman, , et al. A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials[J]. International Journal of Machine Tools & Manufacture, 2013, 64, 114–122.
 [43]. Suhas S. Joshi, Shreyes N. Melkote, An Explanation for the Size-Effect in Machining Using Strain Gradient Plasticity [J]. Journal of Manufacturing Science and Engineering, 2005, 126(4): 679-684.
[44]. H. W. Park, Development of micro-grinding mechanics and machine tools [D]. Atlanta: Georgia Institute of technology, 2008.
[45]. Xinmin Lai, Hongtao Li, Chengfeng Li, et al. Modeling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness [J]. International Journal of Machine Tools & Manufacture, 2008, 48(1): 1–14.
[46]. Shaw. MC. Fundamentals of Grinding [C]. Pittsburgh: Pennsylvania, 1972: 221-258.
[47]. Liu K, Li X. Modeling of ductile cutting of tungsten carbide [J].Transaction of NAMRI/SME, 2001: 251-258.
[48]. Son. S. M, Lim. H. S, Ahn. J. H, Effects of the friction coefficient on the minimum cutting thickness in micro cutting [J]. International Journal of Machine Tools & Manufacture, 2005, 45(4-5): 529-535.
[49]. G. Bissacco, H.N. Hansen, J. Slunsky, Modeling the cutting edge radius size effect for force prediction in micro milling [J]. CIRP Annals - Manufacturing Technology, 2008, 57(1):113–116.
[50]. Armarego EJA, A generic mechanics of cutting approach to predictive technological performance modeling of the wide spectrum of machining operations [J]. Machining Science and Technology, 1998, 2(2):95–107.
[51]. Kai Liu, Shreyes N. Melkote. Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process[J]. International Journal of Mechanical Sciences, 2007, 49(5):650–660.
[52]. K.S. Woon, M. Rahman, K.S. Neo, et al. The effect of tool edge radius on the contact phenomenon of tool-based micromachining[J]. International Journal of Machine Tools & Manufacture, 2008, 48(12-13):1395-1407.
[53]. K.C. Ee, O.W. Dillon Jr, I.S. Jawahir. Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius[J]. International Journal of Mechanical Sciences, 2005, 47(10):1611-1628.
[54]. Mohamed N.A. Nasr, E.-G. Ng, M.A, et al. Modeling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L [J], International Journal of Machine Tools & Manufacture, 2007, 47(2):401–411.
[55]. T. Nakasuji, S. Koderaet, S. Hara, et al. Diamond turning of brittle materials for optical components [J]. CIRP Annals-Manufacturing Technology, 1990, 39(1): 89-92.
[56]. B.R. Lawn, T. Jensen, A. Arora, Brittleness as an indentation size effect [J]. Journal of Materials Science, 1976, 11(3): 573–575.
[57]. D.B. Marshall, B.R. Lawn, Indentation of brittle materials [C]. Micro-indentation Techniques in Materials Science and Engineering, American Society for testing and materials, Philadelphia, 1986: 26–46.
[58]. S. Malkin, T.W. Hwang, Grinding Mechanisms for Ceramics [J]. CIRP Annals – Manufacturing Technology,  1996, 45(2):569–580.
[59]. TG Bifano, TA Dow, RO Scattergood. Ductile-regime grinding: a new technology for machining brittle materials [J]. Journal of Manufacturing Science and Engineering, 1991, 113(2): 184-18.
[60] K E Putick, A Franks. The physics of ductile-brittle machining transitions: single-point theory and experiment [J].  Jap. Soc. Prec. Engg, 1990, 56(5): 12-16.
[61]. Saurav Goel, Xichun Luo, Paul Comley, et al. Brittle–ductile transition during diamond turning of single crystal silicon carbide [J]. International Journal of Machine Tools and Manufacture, 2013, 65: 15-21.
[62] John Patten, Wei Gao, Kudo Yasuto. Ductile Regime Nano-machining of Single-Crystal Silicon Carbide [J], Journal of Manufacturing Science and Engineering, 2004, 127(3): 522-532.
[63]. Muhammad Arif, Mustafizur Rahman, Wong Yoke San, Analytical model to determine the critical feed per edge for ductile–brittle transition in milling process of brittle materials [J]. International Journal of Machine Tools & Manufacture, 2011, 51(3): 170–181.
[64]. Taghi. Tawakoli, Bahman. Azarhoushang. Influence of ultrasonic vibrations on dry grinding of soft steel[J]. International Journal of Machine Tools & Manufacture, 2008, 48(14):1585– 1591.
[65]. J. Akbari, H. Borzoie, MH Mamduhi, Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3)[J]. World Academy of Science, Engineering and Technology, 2008, 41:785–789.
[66]. D. Bhaduri, SL. Soo, D. Novovic, et al. Ultrasonic assisted creep feed grinding of Inconel 718[J]. Procedia CIRP, 2013, 6:615–620.
[67]. J. Gan, X. Wang, M. Zhou, et al. Ultra-precision Diamond Turning of Glass with Ultrasonic Vibration [J]. The International Journal of Advanced Manufacturing Technology, 2003, 21(12): 952-955.
[68]. Ming Zhou, X.J. Wang, B.K.A. Ngoi, et al. Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration [J]. Journal of Materials Processing Technology, 2002, 12(2-3):243–251
[69]. 李祥林. 振动切削及其在机械加工中的应用[M]. 北京:北京科学技术出版社,1985.
[70]. D.E. Brehl, T.A. Dow. Review of vibration-assisted machining [J]. Precision Engineering, 2008, 32(3):153–172.
[71]. 胡海军. 超声振动微铣削系统的建立及铣削力和残余应力的研究[D]. 哈尔滨: 哈尔滨工业大学,2012:15-29.
Hu Hai-jun, Ultrasonic vibration micro milling system establishment and research of milling force and residual stress [D], Harbin : Harbin Institute of Technology, 2012:15-29.
[72]. 霍凤伟,郭东明,金洙吉等. 细粒度金刚石砂轮形貌测量与评价[J]. 机械工程学报, 2007, 49(10): 108-113.
Huo Feng-wei, Guo Dong-ming, Jin Zhu-ji, et al, measurement and evaluation of the surface topography of fine diamond grinding wheel [J], Journal of mechanical engineering, 2007, 49(10): 108-113.
[73]. Rogelio L. Hecker, Igor M. Ramoneda, Steven Y. Liang, Analysis of Wheel Topography and Grit Force for Grinding Process Modeling [J]. Journal of Manufacturing Processes, 2003, 5(1): 13-23.
[74]. 任敬心, 华定安, 磨削原理 [M]. 北京:电子工业出版社,2011,28-31.
Ren Jing-xin, Hua Ding-an, Theory of grinding technology [M], Beijing:  Electronic Industry Press, 2011, 28-31.

PDF(2488 KB)

750

Accesses

0

Citation

Detail

段落导航
相关文章

/