基于压电材料的本构关系和内力位移方程,考虑压电材料的正、逆压电效应,求出了压电约束层的动力学控制方程和电学控制方程。根据圆锥壳的几何特性,将变量沿周向进行傅里叶展开,可将上述方程转化为沿母线方向的一阶常微分方程的形式。结合粘弹层的法向平衡方程和位移连续性条件,由主动约束层和基壳的力学方程导出层合结构的动力学方程,并将该方程与压电约束层的电学方程联立,建立了敷设主动约束层圆锥壳的机电耦合模型。然后,借助精细积分技术和叠加原理,采用速度反馈控制策略,提出了一种分析此类结构的半解析、半数值方法,并采用该方法分析了反馈系数、反馈点的布置等参数对敷设主动约束层阻尼圆锥壳振动特性和控制特性的影响。
Abstract
Based on the constitutive relation and internal forces displacement equation of piezoelectric materials, dynamics and electrical control equations of the piezoelectric constrained layer were derived by considering the positive and inverse piezoelectric effect. According the geometric properties of the conical shell, the variables were expanded along circumferential direction with Fourier series, and the above equations were written as a first order differential matrix equation along meridian direction. Combing the normal equilibrium equation and the continuity condition of the displacement, the dynamics equations of the laminated structure are given by virtue of the dynamics equations of the active constrained layer and base shell. Uniting these equations and the electrical control equations of the piezoelectric constrained layer could established the electromechanical coupling model of the conical shell covered with active constrained layer damp. Then, applying the speed feedback control strategy, a semi-analytical semi-numerical method was put forward with precise integration technology and superposition principle. The paper also discussed the effects of the parameters, such as the feedback coefficient, positions of the feedback points, on the vibration and control characteristics of the conical shell covered with active constrained layer damp.
关键词
主动约束层阻尼 /
圆锥壳 /
速度反馈控制策略 /
机电耦合 /
控制特性
{{custom_keyword}} /
Key words
active constrained layer damp /
conical shell /
speed feedback control strategy /
electromechanical coupling /
control characteristics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Biswas D, Ray M. Active constrained layer damping of geometrically nonlinear vibration of rotating composite beams using 1-3 piezoelectric composite[J]. International Journal of Mechanics and Materials in Design, 2013, 9: 83-104.
[2] Vasques C M A, Mace B R, Gardonio P, et al. Arbitrary active constrained layer damping treatments on beams: Finite element modeling and experimental validation[J]. Computer and Structure, 2006, 84: 384-1401.
[3] Ray M C, Shivakumar J. Active constrained layer damping of geometrically nonlinear transient vibrations of composite plates using piezoelectric fiber-reinforced composite[J]. Thin-walled Structures, 2009, 47: 178-189.
[4] Ray M C, Reddy J N. Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites[J]. Composites Science and Technology, 2005, 65: 1226-1236.
[5] 李恩奇, 李道奎, 唐国金, 等. 约束层阻尼圆柱壳动力学分析[J]. 工程力学, 2008, 25(5): 6-11.
Li E Q, Li D K, Tang G J, et al. Dynamic analysis of constrained layer damping cylindrical shell[J]. Engineering Mechanic, 2008, 25(5): 6-11.
[6] 李恩奇, 唐国金, 雷勇军, 等. 约束层阻尼板动力学问题的传递函数解[J]. 国防科技大学学报, 2008, 30(1): 5-9.
Li E Q, Tang G J, Lei Y J, et al. Dynamic analysis of constrained layer damping plate by the transfer function method [J]. Journal of National University of Defense technology. 2008, 30(1): 5-9.
[7] Yuan L Y, Xiang Y, Huang Y Y, et al. A semi-analytical method and the circumferential dominant modal control of circular cylindrical shells with active constrained layer damping treatment [J]. Smart Materials and Structures, 2010, 19(2), 025010(14pp).
[8] Kumar A, Ray M C. Control of smart rotating laminated composite truncated conical shell using ACLD treatment[J]. International Journal of Mechanical Sciences, 2014, 89: 123-141.
[9] 陆静, 向宇, 倪樵, 等. 分析部分环状覆盖PCLD圆锥壳自由振动与阻尼特性的半解析法[J]. 振动工程学报, 2010, 23(2): 213-219.
Lu J, Xiang Y, Ni Qiao, et al. A semi-analytical method for analyzing free vibration and damping effect of a conical shell with partially ring-shaped constrained layer damping treatment[J]. Journal of Vibration Engineering. 2010, 23(2): 213-219.
[10] Hu Y C, Huang S C. The frequency response and damping effect of three-layer thin shell with viscoelastic core[J]. Journal of Computers and Structures, 2000, 76: 577-591.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}