迷宫密封激振力作用下转子系统非线性动力学分析

张恩杰,焦映厚,陈照波,李明章,刘福利

振动与冲击 ›› 2016, Vol. 35 ›› Issue (9) : 159-163.

PDF(1989 KB)
PDF(1989 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (9) : 159-163.
论文

迷宫密封激振力作用下转子系统非线性动力学分析

  • 张恩杰,焦映厚,陈照波,李明章,刘福利
作者信息 +

Nonlinear dynamic analysis of rotor system excited by labyrinth seal force

  • ZHANG En-jie,JIAO Ying-hou,CHEN Zhao-bo,LI Ming-zhang,LIU Fu-li
Author information +
文章历史 +

摘要

由双控体模型确定迷宫密封轴向平均流速,结合Muszynska气流激振力建立了转子-密封系统非线性动力学模型,并采用Runge-Kutta-Fehlbrg方法求解系统非线性动力学方程。分析了迷宫密封间隙、密封半径、齿数、齿腔宽度、进口气压等参数对泄漏量及轴向平均流速的影响;绘制了分岔图、轴心轨迹、Poincare图和频谱图等,研究了转速、进口气压、偏心距及密封有效总长度对系统动力学特性的影响。数值结果表明,转速、密封结构及介质参数的改变能够诱导系统发生单周期运动、概周期运动等复杂的非线性动力学行为。

Abstract

 The current research established the model of labyrinth seal-rotor system using Muszynska’s nonlinear seal forces. In the process of nonlinear dynamic analysis, the axial mean velocity was decided by two-control-volume model. Applying the Runge-Kutta-Fehlbrg numerical integration, the nonlinear dynamic function was solved. This study investigated the effects of parameters such as labyrinth seal clearance, rotor-radius, number of seal strips, cavity-width and inlet pressure on leakage and axial mean velocity. The influences of rotational speed, inlet pressure, eccentricity and effective seal-length on the nonlinear dynamic characteristics of rotor system were also discussed. The nonlinear dynamic properties were performed in bifurcation diagram, axis orbit, Poincare Map and frequency spectrum. The numerical results show that the changing of spin speed, seal geometry and seal medium parameters would induce abundant nonlinear dynamical behavior like periodic, quasi-periodic motion etc.

关键词

迷宫密封 / 转子 / 非线性动力学 / 双控体模型 / Muszynska模型

Key words

labyrinth seal / rotor / nonlinear dynamics / two-control-volume model / Muszynska model

引用本文

导出引用
张恩杰,焦映厚,陈照波,李明章,刘福利. 迷宫密封激振力作用下转子系统非线性动力学分析[J]. 振动与冲击, 2016, 35(9): 159-163
ZHANG En-jie,JIAO Ying-hou,CHEN Zhao-bo,LI Ming-zhang,LIU Fu-li. Nonlinear dynamic analysis of rotor system excited by labyrinth seal force[J]. Journal of Vibration and Shock, 2016, 35(9): 159-163

参考文献

[1] Rhode D A, Demko J A, Traigner U K, et al. The prediction of incompressible flow in labyrinth seals [J]. Journal of Fluids Engineering, 1986, 108(1): 19-25.
[2] 黄守龙,王建中. 流动不稳定性对迷宫密封效率的影响[J]. 武汉工业大学学报,1999,21(1): 44-47.
HUANG Shou-long, WANG Jian-zhong. The influence of flow instability on labyrinth seal efficiency [J]. Journal of Wuhan University of Technology, 1999, 21(1): 44-47.
[3] 黄守龙,马毓义,吴晓松,等. 迷宫通道内部流动和泄漏特性的数值分析[J]. 航空动力学报,1995,10(2): 135-138.
HUANG Shou-long, MA Yu-yi, WU Xiao-song, et al. Numerical analysis of flow and leakage in labyrinth seal [J]. Journal of Aerospace Power, 1995, 10(2): 135-138.
[4] Wang W Z, Liu Y Z, Meng G, et al. Influence of rub groove on rotordynamics associated with leakage air flow through a labyrinth seal [J]. Journal of Mechanical Science and Technology, 2010, 24 (8): 1573-1581.
[5] Zhao W, Nielsen T K, Billdal J T. Effects of cavity on leakage loss in straight-through labyrinth seals [C]// IOP. Proceedings of 25th IAHR Symposium on Hydraulic Machinery and Systems. Timisoara, Romania: IOP Publishing, 2010. 012002.
[6] Kim T S, Cha K S. Comparative analysis of the influence of labyrinth seal configuration on leakage behavior [J]. Journal of Mechanical Science and Technology, 2009, 23(10): 2830-2838.
[7] Kirk G, Gao R. Influence of preswirl on rotordynamic characteristics of labyrinth seals [J]. Tribology Transactions, 2012, 55(3): 357-364.
[8] Gao R, Kirk G. CFD study on stepped and drum balance labyrinth seal [J]. Tribology Transactions, 2013, 56(4): 663-671.
[9] Li Z G, Chen Y S. Research on 1:2 subharmonic resonance and bifurcation of the nonlinear rotor-seal system [J]. Applied Mathematics and Mechanics, 2012, 33(4): 499-510.
[10] He H J, Jing J P. Research into the dynamic coefficient of the rotor-seal system for teeth-on-stator and teeth-on-rotor based on an improved nonlinear seal force model [J]. Journal of Vibration and Control, 2014, 20(15): 2288-2299.
[11] 何洪军,荆建平. 非线性转子-密封系统动力学模型研究[J]. 振动与冲击,2014,33(10): 73-76.
HE Hong-jun, JING Jian-ping. Dynamic model of a nonlinear rotor-seal system [J]. Journal of Vibration and Shock, 2014, 33(10): 73-76.
[12] Li W, Yang Y, Sheng D R, et al. A novel nonlinear model of rotor-bearing-seal system and numerical analysis [J]. Mechanism and Machine Theory, 2011, 46(5): 618-631.
[13] Scharrer J. A comparison of experimental and theoretical results for labyrinth gas seals [D]. Texas: Texas A&M University, 1987.
[14] Childs D W. Dynamic analysis of turbulent annular seals based on hirs lubrication equation [J]. Journal of Lubrication Technology, 1983, 105(3): 429-436.

PDF(1989 KB)

646

Accesses

0

Citation

Detail

段落导航
相关文章

/