半圆盘构件冲击断裂特性的动态焦散线实验研究

李清,郭洋,马万权,王梦远,韩通

振动与冲击 ›› 2016, Vol. 35 ›› Issue (9) : 52-58.

PDF(2268 KB)
PDF(2268 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (9) : 52-58.
论文

半圆盘构件冲击断裂特性的动态焦散线实验研究

  • 李清,郭洋,马万权,王梦远,韩通
作者信息 +

Dynamic Caustics Experiments with Semi-Circular Specimen under Impact loading

  • Li Qing, Guo Yang, MA Wanquan, WANG Mengyuan, Han Tong
Author information +
文章历史 +

摘要

采用动态焦散线实验系统,对有机玻璃(PMMA)在冲击载荷下的I型和I-II混合型裂纹在起裂和扩展时的动态断裂特性进行了研究。结果表明:随着PMMA由I型断裂转变为I-II混合型断裂,从落锤作用在试件上到裂纹起裂所需时间不断增加,说明裂纹起裂需要的能量有所增加,同时从裂纹起裂到最终贯通所需时间不断减少,说明裂纹平均扩展速度也不断增大;在I型断裂中,PMMA的断裂韧度KIC为2.04 MN/m3/2,而在I-II混合型断裂中,PMMA的断裂韧度KIC低于I型断裂时的断裂韧度KIC,但是KIIC有所增大;对于I-II混合型断裂,PMMA极限扩展速度约为366m/s,当达到极限扩展速度后,裂纹尖端出现微裂纹增韧现象,使裂纹的表面能迅速增大,随后裂纹的扩展速度迅速减小。

Abstract

The initiation and propagation of mode I and mixed mode I-II crack in Polymethylmethacrylate (PMMA) subjected to impact loading was studied by using dynamic caustics experimental system. It was shown that the initiation needed more energy from pure mode I to mixed mode I-II for PMMA, because the time-interval before crack initiation increased. The time-interval decreased from crack initiation to crack arrest, and it indicated that the average propagation velocity increased. Fracture toughness KIC of PMMA was 2.04 MN/m3/2 for mode I fracture. For mixed mode I-II fracture, the fracture toughness KIC was lower than one of mode I fracture, but the fracture toughness KIIC was higher. For mixed mode I-II fracture, the maximum propagation velocity PMMA was about 366m / s, then micro-cracks toughening phenomenon appeared at the crack tip. The surface energy of crack increased, and its propagation velocity decreased rapidly.

关键词

冲击断裂 / 动态焦散线 / 断裂韧度 / 半圆盘构件 / 预制裂纹

Key words

impact fracture / dynamic caustics / fracture toughness / notched semi-circular bending specimen / preexisted crack

引用本文

导出引用
李清,郭洋,马万权,王梦远,韩通 . 半圆盘构件冲击断裂特性的动态焦散线实验研究[J]. 振动与冲击, 2016, 35(9): 52-58
Li Qing, Guo Yang, MA Wanquan, WANG Mengyuan, Han Tong. Dynamic Caustics Experiments with Semi-Circular Specimen under Impact loading[J]. Journal of Vibration and Shock, 2016, 35(9): 52-58

参考文献

[1] 肖健. MDYB-3航空有机玻璃疲劳裂纹特性的试验研究[D]. 西北工业大学, 2004.
XIAO Jian. Experimental study of fatigue crack propagation behavior for MDYB-3 Aeronautical Perspex (PMMA) [D]. Northwestern Polytechnical University, 2004.
 [2] 荣吉利, 诸葛迅, 李 健,等. 不同弹头形式的易碎弹冲击航空有机玻璃的数值分析[J]. 振动与冲击,2015, 34(1): 200-205.
RONG Ji-li, ZHU Ge-xun,LI Jian,etal. Numerical analysis on fragile projectile with different warheads impacting against aviation organic glass [J]. Journal of  Vibration and Shock, 2015, 34(1): 200-205.
[3] 吴国夫, 朱西平, 高宗战, 岳珠峰. 蠕变载荷下有机玻璃银纹萌生及损伤研究[J]. 航空材料学报, 2012, 32(3): 79-84.
WU Guo-fu, ZHU Xi-ping, GAO Zong-zhan, etal. Experimental study on crazing initiation and damage in PMMA under creep[J]. Journal of Aeronautical Materials, 2012, 32(3): 79-84.
[4] 王泓,鄢君辉,郑修麟. 有机玻璃疲劳裂纹扩展表达式及控制参量[J]. 航空学报, 2001, 22(1): 83-86.
WANG Hong, YAN Jun-hui, ZHENG Xiu-lin. Formulae and Governing Parameters Of Fatigue Crack Propagation in Polymethylmethacrylate [J]. Journal of Aeronautical Materials, 2001, 22(1): 83-86.
[5] 吴衡毅, 马钢, 夏源明. PMMA低、中应变率单向拉伸力学性能的实验研究[J]. 实验力学, 2005, 20(2): 193-199.
WU Heng-yi, MA Gang, XIA Yuan-ming. Experimental Study on Mechanical Properties of PMMA under Unidirectional Tensile at Low and Intermediate Strain Rates [J]. Journal Of Experimental Mechanics, 2005, 20(2): 193-199.
[6] 周君, 汪洋, 夏源明. 有机玻璃纯Ⅰ型和纯Ⅱ型动态断裂行为的实验研究[J]. 高分子材料科学与工程, 2008, 24(2): 10-13+18.
ZHOU Jun, WANG Yang, XIA Yuan-ming. Experimental Study of Dynamic Fracture Behavior of PMMA Under Pure Mode-Ñand Pure Mode-ÒLoading Conditions [J]. Polymer Materials Science and Engineering, 2008, 24(2): 10-13+18.
[7] Chen W, Lu F, Cheng M. Tension and compression tests of two polymers under quasi-static and dynamic loading [J]. Polymer testing, 2002, 21(2): 113-121.
[8] Huang S, Luo S N, Tatone B S A, et al. Dynamic fracture tests of polymethylmethacrylate μsing a semicircular bend technique [J]. Journal of Mechanics of Materials and Structures, 2011, 6(6): 813-826.
[9] Kalthoff J F. The shadow optical method of caμstics[M]//Static and Dynamic Photoelasticity and Caμstics. Springer Vienna, 1987: 407-522.
[10] Beinert J, Kalthoff J F. Experimental determination of dynamic stress intensity factors by shadow patterns [M]. Experimental evaluation of stress concentration and intensity factors. Springer Netherlands, 1981: 281-330.
[11] Rosakis A J. Analysis of the optical method of caustics for dynamic crack propagation [J]. Engineering Fracture Mechanics, 1980, 13(2): 331-347.
[12] Papadopoulos G A. The experimental method of caustics and the Det.-Criterion of fracture [M]. London: Springer-Verlag, 1993.
[13] Chong K P, Kuruppu M D. New specimen for fracture toughness determination for rock and other materials [J]. International Journal of Fracture, 1984, 26(2): R59-R62.
[14] Krans R L, Tolman F, Van de Ven M F C. Semi-circular bending test: a practical crack growth test μsing asphalt concrete cores [C]. RILEM PROCEEDINGS. CHAPMAN & HALL, 1996: 123-132.
[15] Dai F, Chen R, Xia K. A semi-circular bend technique for determining dynamic fracture toughness [J]. Experimental Mechanics, 2010, 50(6): 783-791.
[16] Xia K, Huang S, Dai F. Evaluation of the frictional effect in dynamic notched semi-circular bend tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2013 62: 148-151.
[17] Van de Steen B, Vervoort A. Non-local stress approach to fracture initiation in laboratory experiments with a tensile stress gradient [J]. Mechanics of materials, 2001, 33(12): 729-740.
[18] Dong S, Xia K, Huang S, et al. Rate dependence of the tensile and flexural strengths of glass–ceramic Macor [J]. Journal of Materials Science, 2011, 46(2): 394-399.

PDF(2268 KB)

Accesses

Citation

Detail

段落导航
相关文章

/